Articles |
|
|
|
|
Delocalization of Quantum Kicked Rotator with a Large Denominator |
MA Tao1;LI Shu-Min 1,2 |
1Department of Modern Physics, University of Science and Technology of China, Hefei 2300262Institut fur Theoretische Physik, Univsitat Heidelberg, 69120 Heidelberg, Germany |
|
Cite this article: |
MA Tao, LI Shu-Min 2008 Chin. Phys. Lett. 25 1968-1971 |
|
|
Abstract We use the iterative unitary matrix multiplication method to calculate the long-time behaviour of the resonant quantum kicked rotator with a large denominator. The delocalization time is an exponential function of the denominator. The wave function delocalizes through degenerate states. We also construct a nonresonant quantum kicked rotator with delocalization.
|
Keywords:
05.45.Mt
|
|
Received: 06 January 2008
Published: 31 May 2008
|
|
PACS: |
05.45.Mt
|
(Quantum chaos; semiclassical methods)
|
|
|
|
|
[1] Abliz A et al 2006 Phys. Rev. A 74 52105 [2] Ji A C, Xie X C, and Liu W M 2007 Phys. Rev. Lett. 99 183602 [3] St\"ockmann H J 1999 Quantum Chaos: An Introduction(Cambridge: Cambridge University Press) [4] Casati G et al 1979 Stochastic behavior in classical andquantum hamiltonian systems in Lecture Notes in Physics ed CasatiG and Ford J (Berlin: Springer) vol 93 pp 334--352 [5] Chirikov B V 1979 Phys. Rep. 52 263 [6] Fishman S, Grempel D R and Prange R E 1982 Phys. Rev.Lett. 49 509 [7] Sokolov V V et al 2000 Phys. Rev. Lett. 84 3566 [8] Hofstadter D R 1976 Phys. Rev. B 14 2239 [9] Casati G and Guarneri I 1984 Comm. Math. Phys. 95 121 [10] Casati G et al 1986 Phys. Rev. A 34 1413 [11] Ma T 2007 e-print nlin/0710.1661 [12] Abramowitz M and Stegun I A 1972 Handbook of MathematicalFunctions with Formulas, Graphs, and Mathematical Tables (New York: Dover) [13] Chang S J and Shi K J 1986 Phys. Rev. A 34 7 [14] Berry M V 1984 Physica D 10 369 [15] Prange R E, Grempel D R and Fishman S 1984 Phys. Rev. B 29 6500 [16] Avron J and Simon B 1982 Bull. Am. Math. Soc. 6 81 [17] Pan C D and Pan C B 2006 Elementary Number Theory(Beijing: Peking University) (in Chinese) [18] Pan C D and Pan C B 1999 Basics of Analytic NumberTheory (Beijing: Science) (in Chinese) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|