Chin. Phys. Lett.  2005, Vol. 22 Issue (5): 1053-1056    DOI:
Original Articles |
General Probabilistic Dense Coding Scheme
WANG Mei-Yu1;YANG Lin-Guang2,3;YAN Feng-Li1,3
1College of Physics, Hebei Normal University, Shijiazhuang 050016 2School of Materials Science and Engineering, Beijing University of Science and Technology, Beijing 100083 3CCAST (World Laboratory), PO Box 8730, Beijing 100080
Cite this article:   
WANG Mei-Yu, YANG Lin-Guang, YAN Feng-Li 2005 Chin. Phys. Lett. 22 1053-1056
Download: PDF(192KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a scheme of probabilistic dense coding using a quantum channel of general pure entangled states. Furthermore, the efficiency of information transmitted in this scheme is calculated.
Keywords: 03.67.Hk     
Published: 01 May 2005
PACS:  03.67.Hk (Quantum communication)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I5/01053
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Mei-Yu
YANG Lin-Guang
YAN Feng-Li
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 1053-1056
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 1053-1056
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 1053-1056
[4] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 1053-1056
[5] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 1053-1056
[6] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 1053-1056
[7] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 1053-1056
[8] WANG Mei-Yu, YAN Feng-Li** . Perfect Entanglement Teleportation via Two Parallel W State Channels[J]. Chin. Phys. Lett., 2011, 28(6): 1053-1056
[9] SU Xiao-Qiang** . Entanglement Enhancement in an XY Spin Chain[J]. Chin. Phys. Lett., 2011, 28(5): 1053-1056
[10] LI Hong-Rong**, LI Fu-Li, ZHU Shi-Yao . Quantum Nonlocally Correlated Observables for Non-Gaussian States[J]. Chin. Phys. Lett., 2011, 28(5): 1053-1056
[11] HAN Jia-Jia, SUN Shi-Hai, LIANG Lin-Mei** . A Three-Node QKD Network Based on a Two-Way QKD System[J]. Chin. Phys. Lett., 2011, 28(4): 1053-1056
[12] WANG Tie-Jun, , LI Tao, DU Fang-Fang, DENG Fu-Guo** . High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense Coding with Hyperentanglement[J]. Chin. Phys. Lett., 2011, 28(4): 1053-1056
[13] LIN Song, **, GAO Fei, LIU Xiao-Fen, . Quantum Secure Direct Communication with Five-Qubit Entangled State[J]. Chin. Phys. Lett., 2011, 28(3): 1053-1056
[14] ZHA Xin-Wei**, MA Gang-Long . Classification of Four-Qubit States by Means of a Stochastic Local Operation and the Classical Communication Invariant[J]. Chin. Phys. Lett., 2011, 28(2): 1053-1056
[15] GAO Fei**, QIN Su-Juan, GUO Fen-Zhuo, WEN Qiao-Yan . Cryptanalysis of Quantum Secure Direct Communication and Authentication Scheme via Bell States[J]. Chin. Phys. Lett., 2011, 28(2): 1053-1056
Viewed
Full text


Abstract