Chin. Phys. Lett.  2009, Vol. 26 Issue (3): 030503    DOI: 10.1088/0256-307X/26/3/030503
GENERAL |
Self-Stable Chaos Control of dc-dc Converter
LU Wei-Guo, ZHOU Luo-Wei, WU Jun-Ke
State Key Laboratory of Power Transmission Equipment System Security and New Technology, Chongqing University, Chongqing 400044
Cite this article:   
LU Wei-Guo, ZHOU Luo-Wei, WU Jun-Ke 2009 Chin. Phys. Lett. 26 030503
Download: PDF(318KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new concept related to self-stable chaos control is first put forward, and its theoretical basis and realization are presented from the frequency-domain perspective. With a new analogous-circuit realization of this control its
applications in the voltage-mode Buck converter is discussed. The harmonic-balance method is applied to determine the control range of the control parameter. The experiment results given in the last part confirm the validity of the proposed control method.
Keywords: 05.45.Gg      05.45.-a      05.45.Pq     
Received: 30 October 2008      Published: 19 February 2009
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/3/030503       OR      https://cpl.iphy.ac.cn/Y2009/V26/I3/030503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Wei-Guo
ZHOU Luo-Wei
WU Jun-Ke
[1] Hamill D C, Deane J H B and Jefferies J 1992 IEEETrans. Power Electron. 7 25
[2] Tsc C K 1994 IEEE Trans. Circuit Syst. I 41 16
[3] Qin Z Y, Lu Q S 2007 Chin. Phys. Lett. 24 886
[4] Fossas E and Olivar G 1996 IEEE Trans. CircuitsSyst. I 43 13
[5] Poddar G, Chakrabarty K and Banerjee S 1995 IEEETrans. Circuits Syst. I 42 502
[6] Batle C, Fossas E and Olivar G 1999 Int. J. CircuitTheor. Appl. 27 617
[7] Zou Y L, Luo X S, Fang J Q and Wang B H 2003 ActaPhys. Sin. 52 2978 (in Chinese)
[8] Zhou Y F, Tse C K, Qiu S S and Chen J N 2005 Chin.Phys. 14 61
[9] Lu W G, Zhou L W and Luo Q M 2007 Chin. Phys. Lett. 24 1837
[10] Lu W G, Zhou L W, Luo Q M and Zhang XF 2008 Phys.Lett. A 372 3217
[11] Fang C C and Abed E H 2001 Proc. Int. Symp. CircuitsSystems 3 209
[12] Pyragas K 1992 Phys. Lett. A 170 421
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 030503
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 030503
[3] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 030503
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 030503
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 030503
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 030503
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 030503
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 030503
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 030503
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 030503
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 030503
[12] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 030503
[13] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 030503
[14] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 030503
[15] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 030503
Viewed
Full text


Abstract