Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 060307    DOI: 10.1088/0256-307X/26/6/060307
GENERAL |
Generalized Positive-Definite Operator in Quantum Phase Space Obtained by Virtue of the Weyl Quantization Rule
HU Li-Yun1,2, FAN Hong-Yi2
1College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 3300222Department of Physics, Shanghai Jiao Tong University, Shanghai 200030
Cite this article:   
HU Li-Yun, FAN Hong-Yi 2009 Chin. Phys. Lett. 26 060307
Download: PDF(190KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We introduce a generalized positive-definite operator Δg(q,p) by smoothing out the Wigner operator Δw(q,p) and by averaging over the "coarse graining'' function. The function is then regarded as the classical Weyl correspondence of the operator Δg(q,p); in this way we can easily identify a quantum state |Φ> such that Δg(q,p)=|Φ><Φ|, and |Φ> turns out to be a new kind of squeezed coherent state. Correspondingly, the generalized distribution function for any state |φ> is <φ| Δg(q,p) |φ> =|<Φ|φ>|2 , which is obviously positive-definite and is a generalization of the Husimi function.

Keywords: 03.65.-w      42.50.-p      05.30.-d     
Received: 22 December 2008      Published: 01 June 2009
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
  05.30.-d (Quantum statistical mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/060307       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/060307
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Li-Yun
FAN Hong-Yi
[1] Wigner E P 1932 Phys. Rev. 40 749
[2] O'Connell R F and Wigner E P 1981 Phys. Lett. A 83 145 Hillery M et al 1984 Phys. Rep. 106 121
[3] Schleich W P 2001 Quantum Optics in Phase Space(Birlin: Wiley-VCH)
[4] Husimi K 1940 Proc. Phys. Math. Soc. Jpn. 22264
[5] Fan H Y and Yang Y L 2006 Phys. Lett. A 353439 Fan H Y et al 2008 Chin. Phys. Lett. 25 3539
[6] Fan H Y and Zaidi H R 1987 Phys. Lett. A 124303
[7] Fan H Y 2003 J Opt B: Quantum Semiclass. Opt. 5 R147 Fan H Y and Hu L Y 2008 Chin. Phys. Lett. 25 513
[8] Fan H Y and Liu N L 1999 Chin. Phys. Lett. 16472 Fan H Y 2001 Chin. Phys. Lett. 18 1301
[9] Weyl H 1927 Z. Phys. 46 1 Fan H Y and Li H Q 2007 Chin. Phys. Lett. 24 3322
[10] Scully M O and Zubairy M S 1996 Quantum Optics(Cambridge: Cambridge University)
[11] Hu L Y, Fan H Y and Lu H L 2008 J. Chem. Phys. 128 054101
[12] See, e.g., Walls D F and Milburn G J 1994 QuantumOptics (Berlin: Springer)
[13] Klauder J R and Skargerstam B S 1985 CoherentStates (Singapore: World Scientific)
[14] Fan H Y and Liu S G 2009 IL Nuovo Cimento DOI10.1393/ncb/i2007-10375-9
[15] Jagannathan R et al 1987 Phys. Lett. A 120161
[16] Gracia-Bond'ia J M et al 1988 Phys. Lett. A 128 20
[17] Simon R et al 1987 Phys. Rev. A 36 3868
[18] Sudarshan E C G 1979 Phys. Lett. A 73 269 Sudarshan E C G 1979 Physica A 96 315
[19] Narcowich F J 1988 J. Math. Phys. 29 2036
[20] Narcowich F J et al 1988 Phys. Lett. A 133167
[21] Brocker T and Werner R F 1985 J. Math. Phys. 36 62
[22] Narcowich F J and O'Connell R F 1986 Phys. Rev. A 34 1
Related articles from Frontiers Journals
[1] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 060307
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 060307
[3] TAO Yong*,CHEN Xun. Statistical Physics of Economic Systems: a Survey for Open Economies[J]. Chin. Phys. Lett., 2012, 29(5): 060307
[4] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 060307
[5] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 060307
[6] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 060307
[7] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 060307
[8] LIU Yang, WU Jing-Hui, SHI Bao-Sen, GUO Guang-Can. Realization of a Two-Dimensional Magneto-optical Trap with a High Optical Depth[J]. Chin. Phys. Lett., 2012, 29(2): 060307
[9] HU Xin, LIU Gang-Qin, XU Zhang-Cheng, PAN Xin-Yu. Influence of Microwave Detuning on Ramsey Fringes of a Single Nitrogen Vacancy Center Spin in Diamond[J]. Chin. Phys. Lett., 2012, 29(2): 060307
[10] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 060307
[11] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 060307
[12] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 060307
[13] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 060307
[14] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 060307
[15] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 060307
Viewed
Full text


Abstract