Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 070501    DOI: 10.1088/0256-307X/26/7/070501
GENERAL |
Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice
XU Quan1,2, QIANG Tian2
1Department of Physics, Daqing Normal University, Daqing 1637122Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
XU Quan, QIANG Tian 2009 Chin. Phys. Lett. 26 070501
Download: PDF(1009KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling. Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive) and the center of the two-dimensional gap breathers (on a light or a heavy atom).
Keywords: 05.45.Xt      02.30.Jr      63.20.Pw      63.20.Ry     
Received: 05 February 2009      Published: 02 July 2009
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  02.30.Jr (Partial differential equations)  
  63.20.Pw (Localized modes)  
  63.20.Ry (Anharmonic lattice modes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/7/070501       OR      https://cpl.iphy.ac.cn/Y2009/V26/I7/070501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Quan
QIANG Tian
[1] Chen W and Mills D L 1987 Phys. Rev. Lett. 5860
[2] Mills D L and Trullinger S E 1987 Phys. Rev. B 36 947
[3] Coste J and Peyraud J 1989 Phys. Rev. B 3913086 Coste J and Peyraud J 1989 Phys. Rev. B 39 13096
[4] Kivahar Y S and Flytzanis N 1992 Phys. Rev. A 46 7972
[5] Chubykulo O A et al 1999 Phys. Rev. B 47 3135
[6] Kivahar Y S 1993 Phys. Rev. Lett. 70 3055
[7] Kovalev A S et al 1999 Phys. Rev. E 60 2309
[8] Livi R et al 1997 Nonlinearity 10 1421
[9] Cretegny T et al 1998 Physica D 119 88
[10] Zolotaryuk A V et al 2001 Physica B 296 251
[11] Maniadis P et al 2003 Phys. Rev. E 67 046612
[12] Gorbatch A V and Johansson M 2003 Phys Rev E 67 066608
[13] Cuevas J et al 2001 J. Phys. A: Math. Gen. 34L221
[14] Xu Q and Tian Q 2005 Sci. Chin. G 48 150
[15] Xu Q and Tian Q 2005 Chin. Sci. Bull. 50 5
[16] Koukouloyannis V et al 2005 Physica D 201 65
[17] Butt I A et al 2006 J. Phys. A: Math. Gen. 394955
[18] Bao F F and Takuji K 2007 Wave Motion 45 68
[19] Kousake I et al 2007 Physica D 225 184
[20] Mackay R S and Aubry S 1994 Nonlinearity 71623
[21] Aubry S 1994 Physica D 71 196
[22] Aubry S 1995 Physica D 86 248
[23] Marin J L and Aubry S 1996 Nonlinearity 91501
[24] Aubry S 1997 Physica D 103 201
[25] Marin J L et al 1998 Physica D 113 283
[26] Alvarez A et al 2002 New J. Phys. 4 721
[27] Xu Q and Tian Q 2008 Chin. Phys. 17 1331
[28] Kopidakis G and Aubry S 1999 Physica D 130155
[29] Xu Q and Tian Q 2008 Chin. Phys. Lett. 253586
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 070501
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 070501
[3] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 070501
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 070501
[5] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 070501
[6] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 070501
[7] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 070501
[8] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 070501
[9] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 070501
[10] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 070501
[11] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 070501
[12] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 070501
[13] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 070501
[14] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 070501
[15] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 070501
Viewed
Full text


Abstract