Chin. Phys. Lett.  2010, Vol. 27 Issue (1): 010202    DOI: 10.1088/0256-307X/27/1/010202
GENERAL |
Lie Symmetries, Perturbation to Symmetries and Adiabatic Invariants of a Generalized Birkhoff System
LI Yan-Min
Department of Physics and Information Engineering, Shangqiu Normal University, Shangqiu 476000
Cite this article:   
LI Yan-Min 2010 Chin. Phys. Lett. 27 010202
Download: PDF(281KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the perturbation to symmetries and adiabatic invariants of a generalized Birkhoff system. Based on the invariance of differential equations under infinitesimal transformations, Lie symmetries, laws of conservations, perturbation to the symmetries and adiabatic invariants of the generalized Birkhoff system are presented. First, the concepts of Lie symmetries and higher order adiabatic invariants of the generalized Birkhoff system are proposed. Then, the conditions for the existence of the exact invariants and adiabatic invariants are proved, and their forms are given. Finally, an example is presented to illustrate the method and results.
Keywords: 02.20.Sv      11.30.-j     
Received: 22 October 2009      Published: 30 December 2009
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/1/010202       OR      https://cpl.iphy.ac.cn/Y2010/V27/I1/010202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Yan-Min

[1] Birkhoff G D 1927 Dynamical Systems (Providence: AMSCollege Publisher)
[2] Santilli R M 1978 Foundations of TheoreticalMechanics I (New York: Springer)
[3] Santilli R M 1983 Foundations of TheoreticalMechanics I$\!$I (New York: Springer)
[4] Mei F X, Shi R C, Zhang Y F and Wu H B 1996 Dynamicsof Birkhoff Systems (Beijing: Beijing Institute of Technology) (inChinese)
[5] Zhang H B 2001 Acta Phys. Sin. 50 1837 (inChinese)
[6] Guo Y X, Luo S K and Shang M 2001 Rep. Math. Phys. 47 313
[7] Luo S K, Lu Y B, Zhou Q, Wang Y D and Ou Y S 2002 Acta Phys. Sin. 51 1913 (in Chinese)
[8] Shang M, Guo Y X and Mei F X 2007 Chin. Phys. 16 292
[9] Ge W K and Mei F X 2007 Acta Phys. Sin. 562476 (in Chinese)
[10] Mei F X, Gang T Q and Xie J F 2006 Chin. Phys. 15 1678
[11] Fu J L, Chen L Q, Luo S K, Chen X W and Wang X M 2001 Acta Phys. Sin. 50 2289 (in Chinese)
[12] Zhang Y 2008 Acta Phys. Sin. 57 5374 (inChinese)
[13]Gu S L and Zhang H B 2004 Chin. Phys. 13 979
[14]Ding N, Fang J H and Chen X X 2008 Chin. Phys. B 17 1967
[15]Chen X W, Zhang R C and Mei F X 2000 Acta Mech. Sin. 16 282
[16]Chen X W and Mei F X 2000 Mech. Res. Commun. 27 365
[17]Chen X W 2002 Chin. Phys. 11 441
[18]Li Y M 2008 J. Henan Normal University 36 52(in Chinese)
[19] Mei F X 1993 Sci. Chin. A 36 1456
[20] Mei F X, Zhang Y F and He G 2007 J. BeijingInstitute of Technology 27 1035 (in Chinese)
[21] Mei F X, Xie J F and Gang T Q 2008 Acta Phys. Sin. 57 4649 (in Chinese)
[22] Mei F X and Cai J L 2008 Acta Phys. Sin. 574657 (in Chinese)
[23] Ge W K and Mei F X 2009 Acta Phys. Sin. 58699 (in Chinese)
[24] Mei F X, Xie J F and Gang T Q 2008 Acta Mech. Sin. 24 583
[25] Guo Y X 2001 Chin. Phys. 10 181
[26] Mei F X, Zhang Y F and Shang M 1999 Mech. Res.Commun. 26 7
[27] Luo S K 2003 Commun. Theor. Phys. 40 265
[28] Ibragimov N H 1999 Elementary Lie Group Analysis andOrdinary Differential Equations (London: Wiley)
[29] Borner H G and Davidson W F 1978 Phys. Rev. Lett. 40 167
[30] Fuchs J C 1991 J. Math. Phys. 32 1703
[31] Aguirre M and Krause J 1988 J. Math. Phys. 299
[32] Ibragimov N H 1996 CRC Handbook of Lie GroupAnalysis of Differential Equations (New York: CRC) vol 3
[33] Kruskal M 1962 J. Math. Phys. 3 806
[34] Djukic D J S 1981 Int. J. Nonlinear Mech. 16489
[35] Fu J L and Chen L Q 2004 Phys. Lett. A 324 95
[36] Hu J H 1999 SIAM J. Appl. Math. 59 322
[37] Zhao Y Y and Mei F X 1996 Acta Mech. Sin. 28207 (in Chinese).
[38] Chen X W, Li Y M and Zhao Y H 2005 Phys. Lett. A 337 274
[39] Ostrovsky V N and Prudov N V 1995 J. Phys. B 20 4435
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 010202
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 010202
[3] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 010202
[4] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 010202
[5] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 010202
[6] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 010202
[7] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 010202
[8] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 010202
[9] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 010202
[10] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 010202
[11] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 010202
[12] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 010202
[13] K. Fakhar**, A. H. Kara. An Analysis of the Invariance and Conservation Laws of Some Classes of Nonlinear Ostrovsky Equations and Related Systems[J]. Chin. Phys. Lett., 2011, 28(1): 010202
[14] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 010202
[15] TAO Si-Xing, XIA Tie-Cheng. Lie Algebra and Lie Super Algebra for Integrable Couplings of C-KdV Hierarchy[J]. Chin. Phys. Lett., 2010, 27(4): 010202
Viewed
Full text


Abstract