Chin. Phys. Lett.  2010, Vol. 27 Issue (1): 010201    DOI: 10.1088/0256-307X/27/1/010201
GENERAL |
New Solitary Solutions of (2+1)-Dimensional Variable Coefficient Nonlinear Schrödinger Equation with an External Potential
SONG Zhao-Hui, DING Qi, MEI Jian-Qin, ZHANG Hong-Qing
School of Mathematics Sciences, Dalian University of Technology, Dalian 116024
Cite this article:   
SONG Zhao-Hui, DING Qi, MEI Jian-Qin et al  2010 Chin. Phys. Lett. 27 010201
Download: PDF(291KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By a series of transformations, the (2+1)-dimensional variable coefficient nonlinear Schrödinger equation can turn to the Klein-Gordon equation. Many new double travelling wave solutions of the Klein-Gordon equation are obtained. Thus, the new solitary solutions of the variable coefficient nonlinear Schröinger equation with an external potential can be found.
Keywords: 02.30.Jr      05.45.Yv     
Received: 06 June 2009      Published: 30 December 2009
PACS:  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/1/010201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I1/010201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SONG Zhao-Hui
DING Qi
MEI Jian-Qin
ZHANG Hong-Qing

[1] Zhu J M and LIU Y L 2009 Commun. Theor. Phys. 51 391
[2] Wang Zh and Zhang H Q 2007 Applied Mathematics andComputation 186 693
[3] Abdou MA 2007 Chaos, Solitons \& Fractals 31(1) 95
[4] Liu J B, Lei Y and Yang K Q 2004 Phys. Lett. A 325 268
[5] L J B and Yang K Q 2004 Chaos, Solitons \& Fractals 22 111
[6] Malfliet W 1996 Physica Scripta 54 563
[7] Malfliet W 1996 Physica Scripta 54 569
[8] Zhang Sh 2007 Chaos, Solitons \& Fractals 32(4) 1375
[9]Sirendaoreji 2007 Phys. Lett. A 363 440
[10] Sirendaoreji 2007 Chaos, Solitons \& Fractals 31 943
[11] Sirendaoreji 2006 Phys. Lett. A 356 124
[12] Sirendaoreji and Sun J 2003 Phys. Lett. A 309387
[13] Wazwaz A M 2006 Chaos, Solitons \& Fractals 28 1005
[14] Wazwaz A M 2006 Chaos, Solitons \& Fractals 28 127
[15] Wazwaz A M 2005 Chaos, Solitons \& Fractals 25 55
[16] Wazwaz A M 2005 Appl. Math. Comput. 167 1179
[17] Zhou Y B, Wang M L and Wang Y M 2003 Phys. Lett. A 308 313
[18] Zhou Y B, Wang M L and Miao T D 2004 Phys. Lett. A 323 77
[19] Wang M L 1996 Phys. Lett. A 216 67
[20] Wang M L 1995 Phys. Lett. A 199 69
[21] Yu Y X, Wang Q and Zhang H Q 2005 Chaos, Solitons\& Fractals 26 1415
[22] Zhang H Q 2007 Chaos, Solitons \& Fractals 32 653
[23]Bangsoo J 2008 Chaos, Solitons \& Fractals 371372
[24] Belmonte-Beitia and Cuevas 2009 J. Phys. A: Math.Theor. 42 11
[25]Zhao Y, Zhang S L and Lou S Y 2009 Chin. Phys. Lett. 26 100201
[26]You F C, Zhang J and HAO H H 2009 Chin. Phys. Lett. 26 090201
[27]Shen M 2009 Chin. Phys. Lett. 26 060401
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 010201
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 010201
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 010201
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 010201
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 010201
[6] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 010201
[7] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 010201
[8] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 010201
[9] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 010201
[10] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 010201
[11] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 010201
[12] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 010201
[13] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 010201
[14] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 010201
[15] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 010201
Viewed
Full text


Abstract