Chin. Phys. Lett.  2010, Vol. 27 Issue (1): 016301    DOI: 10.1088/0256-307X/27/1/016301
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
The Influence of Cap and Defect Layer on Interface Optical-Phonon Modes in Finite Superlattices
WANG Xin-Jun1,2, LIU Jing-Feng2,3, LUO Yong-Feng1, LI Shui1
1Institute of mathematics and physics, College of Science, Central South University of Forestry & Technology, Changsha 4100042State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 5102753College of Science, South China Agricultural University, Guangzhou 510642
Cite this article:   
WANG Xin-Jun, LIU Jing-Feng, LUO Yong-Feng et al  2010 Chin. Phys. Lett. 27 016301
Download: PDF(909KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Employing the transfer matrix method, we investigate the property of the interface optical-phonon modes (IOPMs) in a finite superlattice with a cap layer and a structural defect layer in the dielectric continuum approximation. In the present structure, there exist two types of defect IOPMs: localized modes and surface modes. The evolution of extended, localized and surface IOPMs can be clearly tracked with the thickness of the defect or cap layer. In some cases, degeneracy between surface IOPMs may occur, but the conservation of the total number of the IOPMs is always kept for every value of the transversal wave number. These results show that the spectra of these localized or surface IOPMs can be engineered by adjusting structural parameters.
Keywords: 63.20.Pw      63.22.+m     
Received: 20 February 2009      Published: 30 December 2009
PACS:  63.20.Pw (Localized modes)  
  63.22.+m  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/1/016301       OR      https://cpl.iphy.ac.cn/Y2010/V27/I1/016301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xin-Jun
LIU Jing-Feng
LUO Yong-Feng
LI Shui

[1] Combescot M and Benoit a la Guillaume C 1981 SolidState Commun. 39 651
[2] Suris R A and Lavallard P 1994 Phys. Rev. B 508875
[3] Indjin D et al 1997 Phys. Rev. B 55 9722
[4] Huang W Q et al 2004 Phys. Lett. A 325 70
[5] Chen K Q et al 2000 Phys. Rev. B 61 12075
[6] Wang X H et al 2002 J. Appl. Phys. 92 5113
[7] Mizuno S 2002 Phys. Rev. B 65 193302
[8] Bria D et al 2000 Phys. Rev. B 61 15858
[9] Mizuno S and Tamura S I 1996 Phys. Rev. B 534549
[10] Mizoguchi K et al 2002 J. Phys.: Condens. Matter 14 103
[11] Pu N W and Bokor J 2003 Phys. Rev. Lett. 91076101
[12] Zucker J E et al 1984 Phys. Rev. Lett. 531280
[13] Huang K and Zhu B F 1988 Phys. Rev. B 38 2183
[14] Duan W H, Zhu J L, Gu B L 1994 Phys. Rev. B 49 14403
[15] Kim D K et al 2002 Phys. Rev. B 65 115328
[16] Pokatilov E P et al 1982 Phys. Status Solidi B 110 K75
[17] Fomin V M et al 1985 Phys. Status Solidi B 132 69
[18] Bah M L et al 1995 J. Phys.: Condens. Matter 7 3445
[19] Streight S R and Mills D L 1987 Phys. Rev. B 35 6337
[20] Tsuruoka T et al 1994 Phys. Rev. B 49 4745
[21] Peng X F et al 2007 Appl. Phys. Lett. 90193502
[22] Wang X J et al 2008 Chin. Phys. Lett. 25 2110
[23] Chen K Q et al 2000 Phys. Rev. B 62 9919
[24] Chen K Q et al 2002 J. Phys.: Condens. Matter 14 13761
[25] Fuchs R and Kliewer K L 1965 Phys. Rev. 140A2076
[26] Yu S G et al 1997 J. Appl. Phys. 82 3363
Related articles from Frontiers Journals
[1] PAN Rui-Qin. Diameter and Temperature Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2011, 28(6): 016301
[2] XU Quan, TIAN Qiang. Periodic, Quasiperiodic and Chaotic q-Breathers in a Fermi-Pasta-Ulam Lattice[J]. Chin. Phys. Lett., 2010, 27(2): 016301
[3] CUI Wei-Na, ZHU Yong-Yuan**, LI Hong-Xia, LIU Su-Mei. (2+1)-Dimensional Envelope Solitons in Nonlinear Magnetic Metamaterials[J]. Chin. Phys. Lett., 2010, 27(11): 016301
[4] XU Quan, QIANG Tian. Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice[J]. Chin. Phys. Lett., 2009, 26(7): 016301
[5] XU Quan, TIAN Qiang. Periodic, Quasiperiodic and Chaotic Discrete Breathers in a Parametrical Driven Two-Dimensional Discrete Klein-Gordon Lattice[J]. Chin. Phys. Lett., 2009, 26(4): 016301
[6] WANG Xin-Jun, LIU Jing-Feng, LI Shui. Low-Temperature Thermal Conductance in Superlattice Nanowire with Structural Defect[J]. Chin. Phys. Lett., 2008, 25(6): 016301
[7] ZHOU Ben-Liang, LIAO Wen-Hu, ZHOU Guang-Hui,. Conductance of a Quantum Dot in the Presence of a Phonon Field[J]. Chin. Phys. Lett., 2008, 25(2): 016301
[8] XU Quan, TIAN Qiang. Two-Dimensional Discrete Gap Breathers in a Two-Dimensional Diatomic β Fermi--Pasta--Ulam Lattice[J]. Chin. Phys. Lett., 2008, 25(10): 016301
[9] XU Quan, TIAN Qiang. Existence and Stability of Compact-Like Discrete Breather in Discrete One-Dimensional Monatomic Chains[J]. Chin. Phys. Lett., 2007, 24(8): 016301
[10] PAN Rui-Qin, XU Zi-Jian, ZHU Zhi-Yuan. Length Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2007, 24(5): 016301
[11] ZHANG Yong-Mei, XU Chen-Hua, XIONG Shi-Jie. Phonon Transmission and Thermal Conductance in Fibonacci Wire at Low Temperature[J]. Chin. Phys. Lett., 2007, 24(4): 016301
[12] LU Jian-Duo, SHAO Liang, HOU Yang-Lai, YI Lin. Phonon Transport and Thermal Conductivity in an Acoustic Filter[J]. Chin. Phys. Lett., 2007, 24(3): 016301
[13] XU Quan, TIAN Qiang. Multi-site Compact-Like Discrete Breather in Discrete One-Dimensional Monatomic Chains[J]. Chin. Phys. Lett., 2007, 24(12): 016301
[14] XU Quan, TIAN Qiang. Existence and Stability of Two-Dimensional Compact-Like Discrete Breathers in Discrete Two-Dimensional Monatomic Square Lattices[J]. Chin. Phys. Lett., 2007, 24(12): 016301
[15] KENZO Yamaguchi, TOMOHIRO Inoue, MASAMITSU Fujii, MASANOBU Haraguchi, TOSHIHIRO Okamoto, MASUO Fukui, SHU Seki, SEIICHI Tagawa. Electric Field Enhancement of Nano Gap of Silver Prisms[J]. Chin. Phys. Lett., 2007, 24(10): 016301
Viewed
Full text


Abstract