CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
The Influence of Cap and Defect Layer on Interface Optical-Phonon Modes in Finite Superlattices |
WANG Xin-Jun1,2, LIU Jing-Feng2,3, LUO Yong-Feng1, LI Shui1 |
1Institute of mathematics and physics, College of Science, Central South University of Forestry & Technology, Changsha 4100042State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 5102753College of Science, South China Agricultural University, Guangzhou 510642 |
|
Cite this article: |
WANG Xin-Jun, LIU Jing-Feng, LUO Yong-Feng et al 2010 Chin. Phys. Lett. 27 016301 |
|
|
Abstract Employing the transfer matrix method, we investigate the property of the interface optical-phonon modes (IOPMs) in a finite superlattice with a cap layer and a structural defect layer in the dielectric continuum approximation. In the present structure, there exist two types of defect IOPMs: localized modes and surface modes. The evolution of extended, localized and surface IOPMs can be clearly tracked with the thickness of the defect or cap layer. In some cases, degeneracy between surface IOPMs may occur, but the conservation of the total number of the IOPMs is always kept for every value of the transversal wave number. These results show that the spectra of these localized or surface IOPMs can be engineered by adjusting structural parameters.
|
Keywords:
63.20.Pw
63.22.+m
|
|
Received: 20 February 2009
Published: 30 December 2009
|
|
|
|
|
|
[1] Combescot M and Benoit a la Guillaume C 1981 SolidState Commun. 39 651 [2] Suris R A and Lavallard P 1994 Phys. Rev. B 508875 [3] Indjin D et al 1997 Phys. Rev. B 55 9722 [4] Huang W Q et al 2004 Phys. Lett. A 325 70 [5] Chen K Q et al 2000 Phys. Rev. B 61 12075 [6] Wang X H et al 2002 J. Appl. Phys. 92 5113 [7] Mizuno S 2002 Phys. Rev. B 65 193302 [8] Bria D et al 2000 Phys. Rev. B 61 15858 [9] Mizuno S and Tamura S I 1996 Phys. Rev. B 534549 [10] Mizoguchi K et al 2002 J. Phys.: Condens. Matter 14 103 [11] Pu N W and Bokor J 2003 Phys. Rev. Lett. 91076101 [12] Zucker J E et al 1984 Phys. Rev. Lett. 531280 [13] Huang K and Zhu B F 1988 Phys. Rev. B 38 2183 [14] Duan W H, Zhu J L, Gu B L 1994 Phys. Rev. B 49 14403 [15] Kim D K et al 2002 Phys. Rev. B 65 115328 [16] Pokatilov E P et al 1982 Phys. Status Solidi B 110 K75 [17] Fomin V M et al 1985 Phys. Status Solidi B 132 69 [18] Bah M L et al 1995 J. Phys.: Condens. Matter 7 3445 [19] Streight S R and Mills D L 1987 Phys. Rev. B 35 6337 [20] Tsuruoka T et al 1994 Phys. Rev. B 49 4745 [21] Peng X F et al 2007 Appl. Phys. Lett. 90193502 [22] Wang X J et al 2008 Chin. Phys. Lett. 25 2110 [23] Chen K Q et al 2000 Phys. Rev. B 62 9919 [24] Chen K Q et al 2002 J. Phys.: Condens. Matter 14 13761 [25] Fuchs R and Kliewer K L 1965 Phys. Rev. 140A2076 [26] Yu S G et al 1997 J. Appl. Phys. 82 3363 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|