Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 024201    DOI: 10.1088/0256-307X/27/2/024201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
High Efficiency Multi-kW Diode-Side-Pumped Nd:YAG Laser with Reduced Thermal Effect

XU Yi-Ting1,3, XU Jia-Lin2, CUI Qian-Jin2, XIE Shi-Yong 1,3, LU Yuan-Fu2, BO Yong2, PENG Qin-Jun2, CUI Da-Fu2, XU Zu-Yan2

1Laboratory of Optical Physics, Institute of Physics, Chinese Academy ofSciences, Beijing 1001902RCLPT, Key Lab of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 1001903Graduate School of the Chinese Academy of Sciences, Beijing 100049
Cite this article:   
XU Yi-Ting, XU Jia-Lin, CUI Qian-Jin et al  2010 Chin. Phys. Lett. 27 024201
Download: PDF(477KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate a high efficiency multi-kW diode-side-pumped Nd:YAG laser. High cooling efficiency of the diode-side-pumped module in the laser is achieved. The middle portion of the Nd:YAG rod in the module is cooled by a coolant jet with screwed side surface, and the end-caps of the rod without screwed side surface are cooled by Au coated on the surface. The thermal effect of the laser rod is reduced, which leads to high output power with high optical-optical conversion efficiency. By using three identical Nd:YAG laser modules, an output power of 4.2 kW and beam quality of 58 mm・mrad with an optical-optical efficiency of 35% at 1064 nm is obtained in a laser oscillator. By using four identical Nd:YAG laser modules, an output power of 3.1 kW and beam quality of 17 mm・mrad with an optical-optical efficiency of 25.8% is demonstrated in a master oscillator power-amplifier system.
Keywords: 42.60.Da      42.55.Xi     
Received: 03 September 2009      Published: 08 February 2010
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.55.Xi (Diode-pumped lasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/024201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/024201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Yi-Ting
XU Jia-Lin
CUI Qian-Jin
XIE Shi-Yong
LU Yuan-Fu
BO Yong
PENG Qin-Jun
CUI Da-Fu
XU Zu-Yan
[1] Holger S et al 2005 Proc. SPIE 8 5777
[2] Shuichi F J, Tetsuo K, and Koji Y et al 1997 IEEE J. Sel. Top. Quantum. Electron. 3 40
[3] Bo Y, Geng A C, Bi Y et al 2005 Chin. Phys. 14 771
[5] Christian S, Karsten C, Mikhail L et al 2000 IEEE J. Sel. Top. Quantum. Electron. 6 650
[6] Qiang L, Mali G, Fuyuan L et al 2006 Appl. Phys. Lett. 88 101113
[7] Jeong Y, Sahu J K, Payne D et al 2004 Opt. Express 12 6088
[8] Hans B, David S S et al 2005 IEEE J. Sel. Top. Quantum. Electron. 11 600
Related articles from Frontiers Journals
[1] ZHOU Ren-Lai, ZHAO Jie, YUANG-Chi, CHEN Zhao-Yu, JU You-Lun, WANG Yue-Zhu. All-Fiber Gain-Switched Thulium-Doped Fiber Laser Pumped by 1.558μm Laser[J]. Chin. Phys. Lett., 2012, 29(6): 024201
[2] ZHOU Zhi-Chao, TIAN Xue-Ping, DAI Qi-Biao, HAN Wen-Juan, HUANG Jia-Yin, LIU Jun-Hai, ZHANG Huai-Jin. The Laser Action of a Yb:CLNGG Crystal with an Efficiency Approaching Its Quantum Defect Imposed Limit[J]. Chin. Phys. Lett., 2012, 29(6): 024201
[3] LIU Qin,LIU Jian-Li,JIAO Yue-Chun,FENG Jin-Xia,ZHANG Kuan-Shou**. A Stable 22-W Low-Noise Continuous-Wave Single-Frequency Nd:YVO4 Laser at 1.06 µm Directly Pumped by a Laser Diode[J]. Chin. Phys. Lett., 2012, 29(5): 024201
[4] SU Zhou-Ping**,JI Zhi-Cheng,ZHU Zhuo-Wei,QUE Li-Zhi,ZHU Yun. Phase Locking of Laser Diode Array by Using an Off-Axis External Talbot Cavity[J]. Chin. Phys. Lett., 2012, 29(5): 024201
[5] JIANG Man,ZHANG Qiu-Lin,ZHOU Wen-Jia,ZHANG Jing,ZHANG Dong-Xiang,FENG Bao-Hua**. Self-Q-Switched and Mode-Locked Cr,Nd:YAG Laser under Direct 885 nm Diode Laser Pumping[J]. Chin. Phys. Lett., 2012, 29(5): 024201
[6] REN Cheng**,YANG Xing-Tuan,ZHANG Shu-Lian. Absolute Angular Displacement Determination Based on Laser-Frequency Splitting Technology[J]. Chin. Phys. Lett., 2012, 29(5): 024201
[7] ZHOU Liang,DUAN Kai-Liang**. Phases in a General Chaotic Three-Coupled-Laser Array[J]. Chin. Phys. Lett., 2012, 29(4): 024201
[8] DU Ming-Di,SUN Jun-Qiang**,CHENG Wen-Long. THz Output Improvement in a Photomixer with a Resonant-Cavity-Enhanced Structure[J]. Chin. Phys. Lett., 2012, 29(4): 024201
[9] LIU Hou-Kang,XUE Yu-Hao,LI Zhen,HE Bing**,ZHOU Jun**,DING Ya-Qian,JIAO Meng-Li,LIU Chi,QI Yun-Feng,WEI Yun-Rong,DONG Jing-Xing,LOU Qi-Hong. The Improved Power of the Central Lobe in the Beam Combination and High Power Output[J]. Chin. Phys. Lett., 2012, 29(4): 024201
[10] WU Wen-Han,HUANG Xi,YU Yu**,ZHANG Xin-Liang. RZ-DQPSK Signal Amplitude Regeneration Using a Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(4): 024201
[11] ZHENG Yao-Hui**,WANG Ya-Jun,PENG Kun-Chi. A High-Power Single-Frequency 540 nm Laser Obtained by Intracavity Frequency Doubling of an Nd:YAP Laser[J]. Chin. Phys. Lett., 2012, 29(4): 024201
[12] CAO Dong,DU Shi-Feng**,PENG Qin-Jun,BO Yong,XU Jia-Lin,GUO Ya-Ding,ZHANG Jing-Yuan,CUI Da-Fu,XU Zu-Yan. A 171.4 W Diode-Side-Pumped Q-Switched 2 µm Tm:YAG Laser with a 10 kHz Repetition Rate[J]. Chin. Phys. Lett., 2012, 29(4): 024201
[13] YAO Bao-Quan, DUAN Xiao-Ming, YU Zheng-Ping, WANG Yue-Zhu. Actively Q−Switched Laser Performance of Holmium-Doped Lu2SiO5 Crystal[J]. Chin. Phys. Lett., 2012, 29(3): 024201
[14] YAN Ying, FAN Zhong-Wei, NIU Gang, YU Jin, ZHANG Heng-Li. A 46-W Laser Diode Stack End-Pumped Slab Amplifier with a Pulse Duration of Picoseconds[J]. Chin. Phys. Lett., 2012, 29(3): 024201
[15] ZHENG Yi-Bo, YAO Jian-Quan, ZHANG Lei, WANG Yuan, WEN Wu-Qi, JING Lei, DI Zhi-Gang. Three-Dimensional Thermal Analysis of 18-Core Photonic Crystal Fiber Lasers[J]. Chin. Phys. Lett., 2012, 29(2): 024201
Viewed
Full text


Abstract