NUCLEAR PHYSICS |
|
|
|
|
Pseudorapidity Distributions of Charged Particles and Contributions of Leading Nucleons in Cu-Cu Collisions at High Energies |
SUN Jian-Xin1,2, LIU Fu-Hu1, WANG Er-Qin1 |
1Institute of Theoretical Physics, Shanxi University, Taiyuan 0300062School of Engineering, Shanxi Datong University, Datong 037003 |
|
Cite this article: |
SUN Jian-Xin, LIU Fu-Hu, WANG Er-Qin 2010 Chin. Phys. Lett. 27 032503 |
|
|
Abstract The pseudorapidity distributions of charged particles produced in Cu-Cu collisions over an energy range from 22.4 GeV to 200 GeV are investigated by using a multi-source ideal gas model which contains systematically the contributions of leading nucleons. It is shown that the calculated results are in agreement with the experimental data and the model is successful in the description of the pseudorapidity distribution of charged particles. The contributions of leading nucleons increase with the increasing impact parameter. The cylinder length (the longitudinal shift of the interacting system) in rapidity space increases with the increasing energy and does not depend on centrality at a given energy.
|
Keywords:
25.75.-q
24.10.Pa
25.75.Dw
|
|
Received: 28 September 2009
Published: 09 March 2010
|
|
PACS: |
25.75.-q
|
(Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))
|
|
24.10.Pa
|
(Thermal and statistical models)
|
|
25.75.Dw
|
(Particle and resonance production)
|
|
|
|
|
[1] Tian J L, Li X, Wu X Z, Li Z X and Yan S W 2009 Chin. Phys. Lett. 26 062502 [2] Fu Y, Fang D Q, Ma Y G, Cai X Z, Tian W D, Wang H W and Guo W 2009 Chin. Phys. Lett. 26 082503 [3] Meng C R 2009 Chin. Phys. Lett. 26 102501 [4] Werner K 1995 Phys. Rep. 232 87 [5] Westfall G D et al 1976 Phys. Rev.Lett. 37 1202 [6] Liu F H 1998 Acta Phys. Sin. (Overseas Edition) 7 321 [7] Liu F H and Panebratsev Y A 1998 Nucl. Phys. A 641 379 [8] Liu F H and Panebratsev Y A 1999 Phys. Rev. C 59 1193 [9] Liu F H and Panebratsev Y A 1999 Phys. Rev. C 59 1798 [10] Liu F H 2004 Phys. Lett. B 583 68 [11] Liu F H, Zhang D H and Duan M Y 2003 Europhys. Lett. 61 736 [12] Liu F H, Yin X Y, Tian J L and Abd Allah N N 2004 Phys. Rev. C 69 034905 [13] Kaidalov A B 1982 Phys. Lett. B 116 459 [14] Kaidalov A B, Ter-Martirosian K A 1982 Phys. Lett. B 117 247 [15] Amelin N S et al 1993 Phys. Rev. C 47 2299 [16] Burau G et al 2005 Phys. Rev. C 71 054905 [17] Zabrodin E E et al 2005 J. Phys. G 31 S995 [18] Dias de Deus J and Milhano J G 2007 Nucl. Phys. A 795 98 [19] Wang X N 1991, Phys. Rev. D 43 104 [20] Wang X N and Gyulassy M 1991 Phys. Rev. D 44 3501 [21] Wang X N and Gyulassy M 1992 Phys. Rev. Lett. 68 1480 [22] Li B A and Ko C M 1995 Phys. Rev. C 52 2037 [23] Zhang B 1998 Comput. Phys. Commun. 109 193 [24] Kharzeev D, Levin E and McLerran L 2003 Phys. Lett. B 561 93 [25] Sorge H, Stocker H and Greiner W 1989 Nucl. Phys. A 498 567c [26] Sorge H, von Keitz A, Mattiello R, Stocker H and Greiner W 1991 Nucl. Phys. A 525 95c [27] Jahns A et al 1994 Nucl. Phys. A 566 483c [28] Tywoniuk K et al 2007 Phys. Lett. B 657 170 [29] Clare R B and Strottmann D 1986 Phys. Rep. 141 177. [30] Ornik U, Weiner R M and Wilk G 1994 Nucl. Phys. A 566 469c. [31] Pang Y, Schlagel T J and Kahana S H 1992 Nucl. Phys. A 544 453c [32] Pang Y, Schlagel T J and Kahana S H 1992 Phys. Rev. Lett. 68 2743 [33] Kahana S H, Schlagel T J and Pang Y 1994 Nucl. Phys. A 566 465c [34] Liu F H 2000 Phys. Rev. D 63 032001 [35] Adamovich M I et al 1995 Phys. Lett. B 352 472 [36] Liu F H 2008 Phys. Rev. C 78 014902 [37] Liu F H 2000 Phys. Rev. D 62 074002 [38] Alver B et al 2009 Phys. Rev. Lett. 102 142301 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|