Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3311-3314    DOI:
Original Articles |
A (2+1)-Dimensional Displacement Shallow Water Wave System
LIU Ping1,2, LOU Sen-Yue 2,3
1Department of Electronic Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 5284022Department of Physics, Shanghai Jiao Tong University, Shanghai 2002403Department of Physics, Ningbo University, Ningbo 315211
Cite this article:   
LIU Ping, LOU Sen-Yue 2008 Chin. Phys. Lett. 25 3311-3314
Download: PDF(1385KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new (2+1)-dimensional shallow water wave system, the (2+1)-dimensional displacement shallow water wave system (2DDSWWS), is constructed by applying variational principle of the analytic mechanics under the Lagrange coordinates. The general travelling wave solution is expressed as an elliptic integral. A special case is explicitly expressed by the Jacobi elliptic function which is a generalization of the solitary wave solution. Compared with some traditional (2+1)-dimensional shallow water wave systems such as the Kadomtsev--Petviashvili (KP) description under the Euler coordinates, the 2DDSWWS has some its own advantages. In addition, the KP equation can also be derived from the 2DDSWWS under the weak two-dimensional long-wave approximation.
Keywords: 47.10.-g      02.30.Jr     
Received: 16 February 2008      Published: 29 August 2008
PACS:  47.10.-g (General theory in fluid dynamics)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03311
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Ping
LOU Sen-Yue
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 3311-3314
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 3311-3314
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 3311-3314
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 3311-3314
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 3311-3314
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 3311-3314
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 3311-3314
[8] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 3311-3314
[9] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 3311-3314
[10] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 3311-3314
[11] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 3311-3314
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 3311-3314
[13] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 3311-3314
[14] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 3311-3314
[15] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 3311-3314
Viewed
Full text


Abstract