Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3238-3241    DOI:
Original Articles |
Dicke-Narrowing Spectroscopy of Doubly Dressed Electromagnetically Induced Transparency and Singly Dressed Four-Wave-Mixing in a Confined Atomic System
LI Yuan-Yuan1,2, BAI Jin-Tao2, LI-Li1, ZHANG Wei-Feng3, LI Chang-Biao3, NIE
Zhi-Qiang3, GAN Chen-Li3, ZHANG Yan-Peng3
1Department of Physics, Xi'an University of Arts and Science, Xi'an 7100652Institute of Photonics and Photonic Technology, Key Laboratory of Photoelectronic Technology of Shaanxi Province, Northwest University, Xi'an 7100693Key Laboratory for Physical Electronics and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049
Cite this article:   
LI Yuan-Yuan, BAI Jin-Tao, LI-Li et al  2008 Chin. Phys. Lett. 25 3238-3241
Download: PDF(179KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dicke-narrowing effect appears both in doubly dressed electromagnetically induced transparency and singly dressed four-wave-mixing lines due to the contribution of slow atoms resulting from de-excited effects of atom-wall collision and transient behaviour of atoms in a confined system. A robust recipe for high resolution spectroscopy of electromagnetically induced transparency dressed by two fields and four-wave-mixing lines comparable with the cold atoms is achievable in a thin vapour cell in experiments.

Keywords: 42.50.Gy      32.80.Qk      42.65.-k     
Received: 25 May 2008      Published: 29 August 2008
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  42.65.-k (Nonlinear optics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03238
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Yuan-Yuan
BAI Jin-Tao
LI-Li
ZHANG Wei-Feng
LI Chang-Biao
NIEZhi-Qiang
GAN Chen-Li
ZHANG Yan-Peng
[1] Romer R H and Dicke R H 1955 Phys. Rev. 99 532
[2] Briaudeau S et al 1996 Europhys. Lett. 35 337 Sarkisyan D et al 2001 Opt.Commun. 200 201 Sarkisyan D et al 2004 Phys. Rev. 69 065802
[3] Shuker M et al 2007 Phys. Rev. A 76 023813
[4] Li Y Y et al 2008 Chin. Phys. (in print) Petrosyan D et al 2000 Phys. Rev. A 61 053820
[5] Zhan Y P et al 2007 Opt. Lett. 32 1120 Zhan Y P and Xiao M 2007 Appl. Phys. Lett. 90111104
[6] Zhang Y P et al 2007 Phys. Rev. Lett. 99123603
[7] Li Y Y et al 2005 Chin. Opt. Lett. 3 672 Li Y Y, Zhang G Z and Zhou Y 2006 Chin. Phys. 15985 Li Y Y et al 2006 J. Atom. Mol. Phys. 23 877
[8] Li Y Y et al 2006 Acta. Phys. Sin. 55 6293 (inChinese)
[9] Wu Y and Yang X 2004 Phys. Rev. A 70 053818 Wu Y, Saldana J and Zhu Y 2003 Phys. Rev. A 67013811
Related articles from Frontiers Journals
[1] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 3238-3241
[2] XUAN Hong-Wen, WANG Nan, ZHANG Yong-Dong, WANG Zhao-Hua, WEI Zhi-Yi. A Tunable Ultrafast Source by Sum-Frequency Generation between Two Actively Synchronized Ultrafast Lasers[J]. Chin. Phys. Lett., 2012, 29(6): 3238-3241
[3] WANG Chun-Fang, BAI Yan-Feng, GUO Hong-Ju, CHENG Jing. Beam Splitting in Induced Inhomogeneous Media[J]. Chin. Phys. Lett., 2012, 29(6): 3238-3241
[4] HU Zheng-Feng**,LIN Jin-Da,DENG Jian-Liao,HE Hui-Juan,WANG Yu-Zhu. Gain and Absorption of a Probe Light in an Open Tripod Atomic System[J]. Chin. Phys. Lett., 2012, 29(5): 3238-3241
[5] DING Dong-Sheng, ZHOU Zhi-Yuan, SHI Bao-Sen, ZOU Xu-Bo, GUO Guang-Can. Two-Photon Atomic Coherence Effect of Transition 5S1/2–5P3/2–4D5/2(4D3/2) of 85Rb atoms[J]. Chin. Phys. Lett., 2012, 29(2): 3238-3241
[6] TONG Jun-Yi, TAN Wen-Jiang, SI Jin-Hai, CHEN Feng, YI Wen-Hui, HOU Xun. High Time-Resolved Imaging of Targets in Turbid Media Using Ultrafast Optical Kerr Gate[J]. Chin. Phys. Lett., 2012, 29(2): 3238-3241
[7] LIU Yang, WU Jing-Hui, SHI Bao-Sen, GUO Guang-Can. Realization of a Two-Dimensional Magneto-optical Trap with a High Optical Depth[J]. Chin. Phys. Lett., 2012, 29(2): 3238-3241
[8] LI Zhong-Hua, LI Yuan, DOU Ya-Fang, GAO Jiang-Rui, ZHANG Jun-Xiang**. Comparison of the Noise Properties of Squeezed Probe Light in Optically Thick and Thin Quantum Coherence Media for Weak and Strong Coupling Lights[J]. Chin. Phys. Lett., 2012, 29(1): 3238-3241
[9] DONG Jian-Ji**, LUO Bo-Wen, ZHANG Yin, LEI Lei, HUANG De-Xiu, ZHANG Xin-Liang. All-Optical Temporal Differentiator Using a High Resolution Optical Arbitrary Waveform Shaper[J]. Chin. Phys. Lett., 2012, 29(1): 3238-3241
[10] WANG Jing, ZHANG Xiao-Min, HAN Wei, LI Fu-Quan, ZHOU Li-Dan**, FENG Bin, XIANG Yong . Experimental Observation of Near-Field Deterioration Induced by Stimulated Rotational Raman Scattering in Long Air Paths[J]. Chin. Phys. Lett., 2011, 28(8): 3238-3241
[11] DONG Shu-Guang, YANG Jun-Yi, SHUI Min, YI Chuan-Xiang, LI Zhong-Guo, SONG Ying-Lin** . Measurement of Temperature Change in Nonlinear Optical Materials by Using the Z-Scan Technique[J]. Chin. Phys. Lett., 2011, 28(8): 3238-3241
[12] XU Qing, HU Xiang-Ming** . Nonadiabatic Effects of Atomic Coherence on Laser Intensity Fluctuations in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2011, 28(7): 3238-3241
[13] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 3238-3241
[14] LI De-Hua, **, MA Jian-Jun, ZHOU Wei, LIU Sheng-Gang . Terahertz Waveforms Manipulation by Two Orthogonal-Polarized Femtosecond Pulses[J]. Chin. Phys. Lett., 2011, 28(6): 3238-3241
[15] LI Pei-Ning, LIU You-Wen**, MENG Yun-Ji, ZHU Min-Jun . A Multifrequency Cloak with a Single Shell of Negative Index Metamaterials[J]. Chin. Phys. Lett., 2011, 28(6): 3238-3241
Viewed
Full text


Abstract