Chin. Phys. Lett.  2006, Vol. 23 Issue (10): 2841-2844    DOI:
Original Articles |
Growth of NaBi(WO4)2 Dendrite and Mechanism
HONG Yong1;AI Fei1;PAN Xiu-Hong1;JIN Wei-Qing1;ZHONG Wei-Zhuo1;SHINICHI Yoda2
1Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 2Space Utilization Research Center, Office of Space Utilization System, JAXA, 2-2-1, Sengen, Tsukuba, Ibaraki 305, Japan
Cite this article:   
HONG Yong, AI Fei, PAN Xiu-Hong et al  2006 Chin. Phys. Lett. 23 2841-2844
Download: PDF(531KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The solid--liquid interface motion of NaBi(WO4)2 (NBWO) melt crystal growth is observed in an in situ system, in which the whole processes of interface transition from flat interface and cellular to dendrite are visualized. The spacing of the dendrite under smaller temperature gradient turns out to be larger than that under larger temperature gradient, which is found to be sensitive to the temperature distribution. The mechanism of dendrite growth of NBWO is studied based on the model of the growth units of anion coordination polyhedra. The {001} face has two apex links, so it shows higher stability and has high growth rate and forms the arm of dendrite, whereas the {010} face has only one apex link, and thus shows relative slower growth rate and firstly forms the branches.
Keywords: 68.70.+w      81.10.Aj      47.20.Hw     
Published: 01 October 2006
PACS:  68.70.+w (Whiskers and dendrites (growth, structure, and nonelectronic properties))  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  47.20.Hw (Morphological instability; phase changes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I10/02841
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HONG Yong
AI Fei
PAN Xiu-Hong
JIN Wei-Qing
ZHONG Wei-Zhuo
SHINICHI Yoda
Related articles from Frontiers Journals
[1] JI Xiao-Rui, YANG Xiao-Hong. Removing Impurity of cBN Crystal Prepared at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2012, 29(3): 2841-2844
[2] LI Zhe-Yang, **, HAN Ping, LI Yun, NI Wei-Jiang, BAO Hui-Qiang, LI Yu-Zhu . Epitaxial Growth of 4H-SiC on 4° Off-Axis Substrate for Power Devices[J]. Chin. Phys. Lett., 2011, 28(9): 2841-2844
[3] LU Yun-Bin, LIAO Shu-Zhi**, PENG Hao-Jun, ZHANG Chun, ZHOU Hui-Ying, XIE Hao-Wen, OUYANG Yi-Fang, ZHANG Bang-Wei, . Size Model of Critical Temperature for Grain Growth in Nano V and Au[J]. Chin. Phys. Lett., 2011, 28(8): 2841-2844
[4] GAO Zhao-Shun, ZHANG Xian-Ping, WANG Dong-Liang, QI Yan-Peng, WANG Lei, CHENG Jun-Sheng, WANG Qiu-Liang, MA Yan-Wei**, AWAJI Satoshi, WATANABE Kazuo . Fabrication and Properties of Aligned Sr0.6K0.4Fe2As2 Superconductors by High Magnetic Field Processing[J]. Chin. Phys. Lett., 2011, 28(6): 2841-2844
[5] LI Shang-Sheng, LI Xiao-Lei, MA Hong-An, SU Tai-Chao, XIAO Hong-Yu, HUANG Guo-Feng, LI Yong, ZHANG Yi-Shun, JIA Xiao-Peng, ** . Reaction Mechanism of Al and N in Diamond Growth from a FeNiCo-C System[J]. Chin. Phys. Lett., 2011, 28(6): 2841-2844
[6] GUO Xiao-Song, BAO Zhong, ZHANG Shan-Shan, XIE Er-Qing** . A Novel Model of the H Radical in Hot-Filament Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2011, 28(2): 2841-2844
[7] HOU Zhao-Yang, LIU Li-Xia, LIU Rang-Su, TIAN Ze-An. Tracing Nucleation and Growth on Atomic Level in Amorphous Sodium by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(3): 2841-2844
[8] ZHU Xiao-Li, XIE Chang-Qing, ZHANG Man-Hong, LIU Ming, CHEN Bao-Qin, PAN Feng. Fabrication of 11-nm-Wide Silica-Like Lines Using X-Ray Diffraction Exposure[J]. Chin. Phys. Lett., 2009, 26(8): 2841-2844
[9] FU Xin, JIANG Jun, LIU Chao, YU Zhi-Yang, Steffan LEA, YUAN Jun,. Re-entrant-Groove-Assisted VLS Growth of Boron Carbide Five-Fold Twinned Nanowires[J]. Chin. Phys. Lett., 2009, 26(8): 2841-2844
[10] XIONG Juan, GU Hao-Shuang, HU Kuan, HU Ming-Zhe. Fabrication and Frequency Response Characteristics of AlN-Based Solidly Mounted Resonator[J]. Chin. Phys. Lett., 2009, 26(4): 2841-2844
[11] ZHOU Sheng-Guo, ZANG Chuan-Yi, MA Hong-An, HU Qiang, LI Xiao-Lei, LI Shang-Sheng, ZHANG He-Min, JIA Xiao-Peng,. HPHT Synthesis of Different Shape Coarse-Grain Diamond Single Crystals[J]. Chin. Phys. Lett., 2009, 26(4): 2841-2844
[12] LIANG Zhong-Zhu, LIANG Jing-Qiu, JIA Xiao-Peng. Effects of NaN3 Added in Fe-C System on Inclusion and Impurity of Diamond Synthesized at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2009, 26(3): 2841-2844
[13] LIU Xiao-Bing, JIA Xiao-Peng, MA Hong-An, HAN Wei, GUO Xin-Kai, JIA Hong-Sheng. HPHT Synthesis of High-Quality Diamond Single Crystals with Micron Grain Size[J]. Chin. Phys. Lett., 2009, 26(3): 2841-2844
[14] TIAN Yu, JIA Xiao-Peng, ZANG Chuan-Yi, LI Rui, LI Shang-Sheng, XIAO Hong-Yu, ZHANG Ya-Fei, HUANG Guo-Feng, HAN Qi-Gang, MA Li-Qiu, LI Yong, CHEN Xiao-Zhou, ZHANG Cong, MA Hong-An. Finite Element Analysis of Convection in Growth Cell for Diamond Growth Using Ni-Based Solvent[J]. Chin. Phys. Lett., 2009, 26(2): 2841-2844
[15] DONG Wen, GUO Xiang, WANG Si-Zhen, WANG Zhen-Lin, MINGNai-Ben. Fabrication of Two-Dimensional Arrays of Micron-Sized Gold Rings Based on Preferential Nucleation at Reentrant Sites[J]. Chin. Phys. Lett., 2008, 25(8): 2841-2844
Viewed
Full text


Abstract