Chin. Phys. Lett.  2001, Vol. 18 Issue (6): 734-736    DOI:
Original Articles |
Break-Up of Three-Frequency KAM Tori: Determination of the Critical Parameters
ZHOU Ji-Lin1;Bam-Bi HU2,3;SUN Yi-Sui1
1Department of Astronomy and Centre of Astronomy and Astrophysics in Eastern China, Nanjing University, Nanjing 210093 2Department of Physics and Centre for Nonlinear Studies, Hong Kong Baptist University, Hong Kong 3Department of Physics, University of Houston, Houston TX 77204 USA
Cite this article:   
ZHOU Ji-Lin, Bam-Bi HU, SUN Yi-Sui 2001 Chin. Phys. Lett. 18 734-736
Download: PDF(307KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract With a four-dimensional symplectic map we study numerically the break-up of three-frequency Kolmogorov-Arnold-Moser (KAM) tori. The locations and stabilities of a sequence of periodic orbits, whose winding numbers approach the irrational winding number of the KAM torus, are examined. The break-up of quadratic frequency tori is characterized as the exponential growth of the residue means of the convergent periodic orbits. Critical parameters of the break-up of tori with different winding numbers are calculated, which shows that the spiral mean torus is the most robust one in our model.
Keywords: 05.45.-a      02.30.Hq      47.20.Ky     
Published: 01 June 2001
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  02.30.Hq (Ordinary differential equations)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I6/0734
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Ji-Lin
Bam-Bi HU
SUN Yi-Sui
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 734-736
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 734-736
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 734-736
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 734-736
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 734-736
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 734-736
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 734-736
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 734-736
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 734-736
[10] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 734-736
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 734-736
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 734-736
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 734-736
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 734-736
[15] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 734-736
Viewed
Full text


Abstract