Chin. Phys. Lett.  2001, Vol. 18 Issue (6): 731-733    DOI:
Original Articles |
Approximate Scaling Behaviour of Local Spectral Density of States at Relatively Weak Perturbation: a Schematic Shell Model
WANG Wen-Ge
Department of Physics, South-east University, Nanjing 210096 International Center for the Study of Dynamical Systems, 22100 Como, Italy Centre for Nonlinear Studies, Hong Kong Baptist University, Hong Kong, China
Cite this article:   
WANG Wen-Ge 2001 Chin. Phys. Lett. 18 731-733
Download: PDF(336KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For a schematic shell model, we show numerically that, contrary to the behaviour of eigenfunctions, the shapes of the so-called local spectral density of states become close to their forms at extremely strong perturbation (after rescaling) even when the perturbation is relatively weak. The same phenomenon is also found for the random version of the schematic shell model. We suggest that this property of the local spectral density of states may be common to models in which the Hamiltonian matrices in independent particle states have a banded and regular structure.

Keywords: 05.45.+b      03.65.Ge     
Published: 01 June 2001
PACS:  05.45.+b  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I6/0731
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Wen-Ge
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 731-733
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 731-733
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 731-733
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 731-733
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 731-733
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 731-733
[7] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 731-733
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 731-733
[9] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 731-733
[10] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 731-733
[11] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 731-733
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 731-733
[13] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 731-733
[14] Altu&#, , Arda, Ramazan Sever. Effective Mass Schrödinger Equation via Point Canonical Transformation[J]. Chin. Phys. Lett., 2010, 27(7): 731-733
[15] TIAN Gui-Hua, ZHONG Shu-Quan. Ground State Eigenfunction of Spheroidal Wave Functions[J]. Chin. Phys. Lett., 2010, 27(4): 731-733
Viewed
Full text


Abstract