Chin. Phys. Lett.  2007, Vol. 24 Issue (4): 1007-1009    DOI:
Original Articles |
Refit Silver Nanostructures Using a Convergent Electron Beam
ZHANG Jian-Hong
Key Laboratory of Atomic and Molecular Nanosciences (Ministry of Education), Department of Physics, Tsinghua University, Beijing
Cite this article:   
ZHANG Jian-Hong 2007 Chin. Phys. Lett. 24 1007-1009
Download: PDF(678KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using a superionic conductor AgI thin film and a direct current electric field, we synthesize silver nanowires in diameter of about 100nm. In order to refit the prepared nanowires, the samples are irradiated by a convergent electron beam (200kV) inside a transmission electron microscope to prepare new small silver nanostructures. The new nanostructures are investigated in situ by high-resolution transmission electron microscope. This electron-induced crystal growth method is useful for technical applications in fabrication of nanodevices.
Keywords: 61.14.Lj      81.07.-b     
Received: 27 November 2006      Published: 26 March 2007
PACS:  61.14.Lj  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I4/01007
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Jian-Hong
[1] Melosh N A, Boukai A, Diana F, Gerardot B, Badolato A, Petroff P Mand Heath J R 2003 Science 300 112
[2] Sun Y G and Xia Y N 2002 Science 298 2176
[3] Zhang J H, Sun J L, Liu W, Shi S, Sun H S and Guo J H 2005 Nanotechnology 16 2030
[4] Shi S, Sun J L, Zhang J H and Cao Y 2005 Physica B 362231
[5] Deng C G, Ding A L, Zheng X S, Cheng W X and Qiu P S 2005 Chin. Phys. Lett. 22 1739
[6] Li P G, Fu X L, Chen L M, Zhang H Y, Li L H and Tang W H 2005 Chin. Phys. Lett. 22 651
[7] Govindaraj A, Satishkumar B C, Nath M and Rao C N R 2000 Chem.Mater. 12 202
[8] Pang Y T, Meng G W, Fang Q and Zhang L D 2003 Nanotechnology 14 20
[9] Tian M, Wang J, Kurtz J, Mallouk T E and Chan M H W 2003 NanoLett. 3 919
[10] Reches M and Gazit E 2003 Science 300 625
[11] Murphy C J and Jana N R 2002 Adv. Mater. 14 80
[12] Braun E, Eichen Y, Sivan U and Ben-Yoseph G 1998 Nature 391 775
[13] Huang L M, Wang H T, Wang Z B, Mitra A, Bozhilov K N and Yan Y S2002 Adv. Mater 14 61
[14] Sun Y G and Xia Y N 2002 Adv. Mater. 14 833
[15] Sun Y, Gates B, Mayers B and Xia Y 2002 Nano Lett. 2165
[16] Zhang D, Qi L, Yang J, Ma J, Cheng H and Huang L 2004 Chem.Mater. 16 872
[17] Shi S, Sun J L, Zhang G S, Guo J H and Wang Z P 2005 Physica B 362 266
[18] Sun J L, Zhang J H, Liu W, Liu S, Sun H S, Jiang K L, Li Q Q andGuo J H 2005 Nanotechnology 16 2412
[19] Cao Y Liu W, Sun J L, Han Y P, Zhang J H, Liu S, Sun H S and Guo JH 2006 Nanotechnology 17 2378
Related articles from Frontiers Journals
[1] WANG Guo-Biao, XIONG Huan, LIN You-Xi, FANG Zhi-Lai, KANG Jun-Yong, DUAN Yu, SHEN Wen-Zhong. Green Emission from a Strain-Modulated InGaN Active Layer[J]. Chin. Phys. Lett., 2012, 29(6): 1007-1009
[2] LU Ran,JIANG Gen-Shan,LI Bin,ZHAO Quan-Liang,ZHANG De-Qing,YUAN Jie,CAO Mao-Sheng**. Electrical Properties of Lead Zirconate Titanate Thick Film Containing Micro- and Nano-Crystalline Particles[J]. Chin. Phys. Lett., 2012, 29(5): 1007-1009
[3] LUO Bing-Cheng, CHEN Chang-Le**, FAN Fei, JIN Ke-Xin. The Photovoltaic Properties of BiFeO3La0.7Sr0.3MnO3 Heterostructures[J]. Chin. Phys. Lett., 2012, 29(1): 1007-1009
[4] YANG Lin-Hong, DONG Hong-Xing, SUN Zheng, SUN Liao-Xin, SHEN Xue-Chu, CHEN Zhang-Hai** . Temperature-Induced Phase Transition of In2O3 from a Rhombohedral Structure to a Body-Centered Cubic Structure[J]. Chin. Phys. Lett., 2011, 28(8): 1007-1009
[5] LIU Hai-Tao, ZHONG Jia-Song, LIU Bing-Feng, LIANG Xiao-Juan, YANG Xin-Yu, JIN Huai-Dong, YANG Fan, XIANG Wei-Dong, ** . L-cystine-Assisted Growth and Mechanism of CuInS2 Nanocrystallines via Solvothermal Process[J]. Chin. Phys. Lett., 2011, 28(5): 1007-1009
[6] HOU Zhi-Ling**, ZHOU Hai-Feng, YUAN Jie, KANG Yu-Qing, YANG Hui-Jing, JIN Hai-Bo, CAO Mao-Sheng** . Enhanced Ferromagnetism and Microwave Dielectric Properties of Bi0.95Y0.05FeO3 Nanocrystals[J]. Chin. Phys. Lett., 2011, 28(3): 1007-1009
[7] YANG Xiao-Guang, YANG Tao**, WANG Ke-Fan, GU Yong-Xian, JI Hai-Ming, XU Peng-Fei, NI Hai-Qiao, NIU Zhi-Chuan, WANG Xiao-Dong, CHEN Yan-Ling, WANG Zhan-Guo . Intermediate-Band Solar Cells Based on InAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(3): 1007-1009
[8] LI Zheng-Lin, DENG Shao-Zhi, XU Ning-Sheng, LIU Fei, CHEN Jun. Enhanced Field Emission from Large-Area Arrays of W18O49 Pencil-Like Nanostructure[J]. Chin. Phys. Lett., 2010, 27(6): 1007-1009
[9] REN Kun, RAO Feng, SONG Zhi-Tang, WU Liang-Cai, ZHOU Xi-Lin, XIA Meng-Jiao, LIU Bo, FENG Song-Lin, XI Wei, YAO Dong-Ning, CHEN Bomy. Si3.5Sb2Te3 Phase Change Material for Low-Power Phase Change Memory Application[J]. Chin. Phys. Lett., 2010, 27(10): 1007-1009
[10] XIANG Jun, SHEN Xiang-Qian, SONG Fu-Zhan, MENG Xian-Feng. Fabrication and Characterization of Mn0.5Zn0.5Fe2O4 Magnetic Nanofibers[J]. Chin. Phys. Lett., 2010, 27(1): 1007-1009
[11] CAO Bing, ZHANG Wei, HUAI Ping, ZHU Zhi-Yuan. Theoretical Study on the Propagation of Acoustic Phonon Modes in Single-Wall Carbon Nanotubes by Different Potential Models[J]. Chin. Phys. Lett., 2009, 26(8): 1007-1009
[12] ZHANG Yang, YU Da-Peng. Novel Route to Fabrication of Metal-Sandwiched Nanoscale Tapered Structures[J]. Chin. Phys. Lett., 2009, 26(8): 1007-1009
[13] ZHU Shao-Peng, TANG Shao-Chun, MENG Xiang-Kang. Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method[J]. Chin. Phys. Lett., 2009, 26(7): 1007-1009
[14] LI She-Qiang, FU Xing-Qiu, HU Bing, DENG Jia-Jun, CHEN Lei. Electro-oxidation of Formic Acid on Carbon Supported Edge-Truncated Cubic Platinum Nanoparticles Catalysts[J]. Chin. Phys. Lett., 2009, 26(11): 1007-1009
[15] CHEN Shao-Hua, MI Chun-Hui. Friction Properties of Bio-mimetic Nano-fibrillar Arrays[J]. Chin. Phys. Lett., 2009, 26(10): 1007-1009
Viewed
Full text


Abstract