Chin. Phys. Lett.  2007, Vol. 24 Issue (4): 1114-1117    DOI:
Original Articles |
Modular Epidemic Spreading in Small-World Networks
ZHAO Hui;GAO Zi-You
Key Laboratory of Rail Traffic Control and Safety, School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044
Cite this article:   
ZHAO Hui, GAO Zi-You 2007 Chin. Phys. Lett. 24 1114-1117
Download: PDF(307KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the epidemic spreading of the susceptible-infected-susceptible model on small-world networks with modular structure. It is found that the epidemic threshold increases linearly with the modular strength. Furthermore, the modular structure may influence the infected density in the steady state and the spreading velocity at the beginning of propagation. Practically, the propagation can be hindered by strengthening the modular structure in the view of network topology. In addition, to reduce the probability of econnection between modules may also help to control the propagation.
Keywords: 89.75.Hc      87.23.Ge      05.70.Ln      87.19.Xx     
Received: 31 October 2006      Published: 26 March 2007
PACS:  89.75.Hc (Networks and genealogical trees)  
  87.23.Ge (Dynamics of social systems)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  87.19.Xx  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I4/01114
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Hui
GAO Zi-You
[1] Albert R and Barabasi A L 2002 Rev. Mod. Phys. 74 47
[2] Newman M E J 2003 SIAM Rev. 45 167
[3] Mendes J F F, Dorogovtsev S N and Ioffe A F 2003 Evolutionof Networks: From Biological Nets to the Internet and WWW (Oxford:Oxford University Press)
[4] Pastor-Satorras R and Vespignani A 2004 Evolutionand Structure of the Internet: A Statistical Physics Approach(Cambridge: Cambridge University Press)
[6] Watts D J and Strogatz S H 1998 Nature 393 440
[7] Barab{asi A L and Albert R 1999 Science 286 509
[8] Zhao H and Gao Z Y 2006 Chin. Phys. Lett. 23 275
[9] Zhao H and Gao Z Y 2006 Chin. Phys. Lett. 23 2311
[10] Newman M E J 2001 Phys. Rev. E 64 016131
[11] Girvan M and Newman M E J 2002 Proc. Natl Acad. Sci. USA 99 7821
[12] Palla G, Der{enyi I, Farkas I and Vicsek T 2005 Nature 435 814
[13] Ravasz E, Somera A L, Mongru D A, Oltvai Z Nand Barabasi A L 2002 Science 297 1551
[14] Rives A and Galitski T 2003 Proc. Nat. Acad.Sci. USA 100 1128
[15] Eriksen K A, Simonsen I, Maslov S and Sneppen K 2003 Phys.Rev. Lett. 90 148701
[16] Newman M E J and Girvan M 2004 Phys. Rev. E 69026113
[17] Oh E, Rho K, Hong H and Kahng B 2005 Phys. Rev. E 72047101
[18] Yan G, Fu Z Q, Ren J and Wang W X 2007 Phys. Rev. E {bf 75016108
[19] Bailey N T J 1975 The mathematical theory of infectiousdiseases 2nd edn (London: Griffin)
[20] Murray J D 1993 Mathematical Biology(Berlin: Springer)
[21] Pastor-Satorras R and Vespignani A 2001 Phys. Rev.Lett. 86 3200
[22] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. E 63 066117
[23] Yan G, Zhou T, Wang J, Fu Z Q and Wnag B H 2006 Chin. Phys.Lett. 22 510
[24] Marro J and Dickman R 1999 Nonequalibrium PhaseTransitions in Lattice Models (Cambridge: Cambridge University Press)
Related articles from Frontiers Journals
[1] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 1114-1117
[2] ZHANG Feng-Li,ZHANG Mei**. Emergence and Decline of Scientific Paradigms in a Two-Group System[J]. Chin. Phys. Lett., 2012, 29(4): 1114-1117
[3] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 1114-1117
[4] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 1114-1117
[5] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 1114-1117
[6] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 1114-1117
[7] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 1114-1117
[8] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 1114-1117
[9] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 1114-1117
[10] ZHANG Lu, ZHONG Su-Chuan, PENG Hao, LUO Mao-Kang** . Stochastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise[J]. Chin. Phys. Lett., 2011, 28(9): 1114-1117
[11] DENG Li-Li, TANG Wan-Sheng**, ZHANG Jian-Xiong . Coevolution of Structure and Strategy Promoting Fairness in the Ultimatum Game[J]. Chin. Phys. Lett., 2011, 28(7): 1114-1117
[12] SUN Wei-Gang, , CAO Jian-Ting, WANG Ru-Bin** . Approach of Complex Networks for the Determination of Brain Death[J]. Chin. Phys. Lett., 2011, 28(6): 1114-1117
[13] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Optimal Attack Strategy in Random Scale-Free Networks Based on Incomplete Information[J]. Chin. Phys. Lett., 2011, 28(6): 1114-1117
[14] SHANG Yi-Lun . Local Natural Connectivity in Complex Networks[J]. Chin. Phys. Lett., 2011, 28(6): 1114-1117
[15] CAO Xian-Bin, DU Wen-Bo, **, CHEN Cai-Long, ZHANG Jun . Effect of Adaptive Delivery Capacity on Networked Traffic Dynamics[J]. Chin. Phys. Lett., 2011, 28(5): 1114-1117
Viewed
Full text


Abstract