Original Articles |
|
|
|
|
Boundary-Dependent Chaotic Regions for a Bose--Einstein Condensate Interacting with Laser Field |
ZHU Qian-Quan; HAI Wen-Hua;DENG Hai-Ming |
Department of Physics, Hunan Normal University, Changsha 410081 |
|
Cite this article: |
ZHU Qian-Quan, HAI Wen-Hua, DENG Hai-Ming 2007 Chin. Phys. Lett. 24 3077-3080 |
|
|
Abstract Spatial chaos of a Bose--Einstein condensate perturbed by a weak laser standing wave and a weak laser δ pulse is studied. By using the perturbed chaotic solution we investigate the new type of Melnikov chaotic regions, which depend on an integration constant c0 determined by the boundary conditions. It is shown that when the |c0| values are small, the chaotic region corresponds to small values of laser wave vector k, and the chaotic region for the larger k values is related to the large |c0| values. The result is confirmed numerically by finding the chaotic and regular orbits on the Poincaré section for the two different parameter regions. Thus, for a fixed c0 the adjustment of k from a small value to large value can transform the chaotic region into the regular one or on the contrary, which suggests a feasible method for eliminating or generating Melnikov chaos.
|
Keywords:
05.45.Gg
03.65.Ge
03.75.Kk
05.45.Ac
|
|
Received: 24 April 2007
Published: 23 October 2007
|
|
PACS: |
05.45.Gg
|
(Control of chaos, applications of chaos)
|
|
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
05.45.Ac
|
(Low-dimensional chaos)
|
|
|
|
|
[1] Liu W M, Wu B and Niu Q 2000 Phys. Rev. Lett. 84 2294 [2] Wu Y, Yang X and Xiao Y 2001 Phys. Rev. Lett. 86 2200 [3] Wang B B, Fu P M, Liu J and Wu B 2006 Phys. Rev. A 74063610 [4] Yang X X and Wu Y 2003 Chin. Phys. Lett. 20 189 [5] Strecker K E, Partridge G B, Truscott A G andHulet R G 2002 Nature 417 150 [6] Huang G X 2001 Chin. Phys. Lett. 18 628; 2003ibid. 20 802 Huang G X, Szeftel J and Zhu S 2002 Phys. Rev. A 65 053605 [7] Liang Z X and Zhang Z D, and Liu W M 2005 Phys. Rev.Lett. 94 050402 [8] Yang X X, You J and Wu Y 2004 Chin. Phys. Lett. 21 782 [9] Chong G S, Hai W H and Xie Q T 2003 Chin. Phys. Lett. 20 2098 [10] Luo X B and Hai W H 2005 Chin. Phys. Lett. 22 808 [11] Abdullaev F Kh and Kraenkel R A 2000 Phys. Rev. A 62 023613 [12] Liu J, Zhang C, Raizen M G and Niu Q 2006 Phys. Rev. A 73 013601 [13] Lee C H, Hai W H, Shi L, Zhu X W and Gao K L 2001 Phys.Rev. A 64 053604 Hai W H, Lee C H, Chong G S and Shi L 2002 Phys. Rev. E 66 026202 [14] Zhang C, Liu J, Raizen M G and Niu Q 2004 Phys. Rev.Lett. 93 074101 [15] Greiner M, Mandel O, Esslinger T, Ha¨nsch T W, and Bloch I2002 Nature 415 39 [16] Gu H Q, Wang Z C, Jin K and Tan L 2006 Chin. Phys.Lett. 23 556 [17] Wu B, Diener R B and Niu Q 2002 Phys. Rev. A 65025601 [18] Eguiluz V M, Hernandez-Garcia E, Piro O and Balle S 1999 Phys. Rev. E 60 6571 [19] Chong G S, Hai W H, Xie Q T 2004 Chaos 14 217;2005 Phys. Rev. E 71 016202 [20] Kim J H and Stringer J 1992 Applied Chaos (New York: JohnWiley and Sons) [21] Melnikov V K 1963 Trans. Moscow Math. Soc. 12 1 [22] Liu Z R 1994 Perturbation Criteria for Chaos (Shanghai:Shanghai Scientific and Technological Education Press) (in Chinese) [23] Chong G S, Hai W H and Xie Q T 2004 Phys. Rev. E 70 036213 [24] Diener R B et al %, Georgakis G A, Zhong J, Raizen M and Niu Q2001 Phys. Rev. A 64 033416 [25] Liu W M et al %, Fan W B, Zheng W M, Liang J Q and Chui S T2002 Phys. Rev. Lett. 88 170408 [26] Damski B et al %, Zakrzewski J, Santos L, Zoller P and Lewenstein M2003 Phys. Rev. Lett. 91 080403 [27] Xu J, Hai W H and Li H 2007 Chin. Phys. 16 2244 [28] Xia B L and Hai W H 2005 Chin. Opt. Lett. 3 373 [29 Burger S et al %, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera%A, Shlyapnikov G V and Lewenstein M1999 Phys. Rev. Lett. 83 5198 Denschlag J et al 2000 Science 287 97 [30] Hai W H 1998 Chin. Phys. Lett. 15 472 Hai W H et al %, Feng M, Zhu X W, Shi L, Gao K L and Fang X M2000 Phys.Rev. A 61 052105 [31] Strekalov D V et al %, Turlapov A, Kumarakrishnan A and%Sleator T2002 Phys. Rev. A 66 023601 [32] Hogg T and Huberman B A 1982 Phys. Rev. Lett. 48 711 [33] Hai W H, Xie Q T and Fang J S 2005 Phys. Rev. A 72012116 [34] Liu J, Wang W G, Zhang C W, Niu N and Li B W 2005 Phys.Rev. A 72 063623 [35] Xie Q T and Hai W H 2006 Eur. Phys. J. D 39 277 Xie Q T and Hai W H 2005 Eur. Phys. J. D 33 265 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|