Chin. Phys. Lett.  2005, Vol. 22 Issue (8): 1961-1963    DOI:
Original Articles |
Experimental Observation of Kink in a Perfect Bidimensional Granular System
ZHANG Peng;MIAO Guo-Qing;HUANG Kai;YUN Yi;WEI Rong-Jue
State Key Laboratory of Modern Acoustics and Institute of Acoustics, Nanjing University, Nanjing 210093
Cite this article:   
ZHANG Peng, MIAO Guo-Qing, HUANG Kai et al  2005 Chin. Phys. Lett. 22 1961-1963
Download: PDF(523KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The kink formation in a vertical vibrated granular layer has been widely studied in three-dimensional systems, but there are few if any experimental reports on bidimensional granular layers. We report the kink formation newly found in a perfect bidimensional granular system. We measure the range of the driving frequencies and dimensionless accelerations for kinks. Furthermore, we observe a heaping process, which is caused by co-operative action of the kink-associated convection and the sidewall-associated convection.
Keywords: 45.70.Qj      05.45.Yv      45.70.Mg      47.54.+r     
Published: 01 August 2005
PACS:  45.70.Qj (Pattern formation)  
  05.45.Yv (Solitons)  
  45.70.Mg (Granular flow: mixing, segregation and stratification)  
  47.54.+r  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I8/01961
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Peng
MIAO Guo-Qing
HUANG Kai
YUN Yi
WEI Rong-Jue
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1961-1963
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 1961-1963
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 1961-1963
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1961-1963
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 1961-1963
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 1961-1963
[7] Sajjad Hussain Shah, LI Yin-Chang, CUI Fei-Fei, ZHANG Qi, Pierre Evesque, HOU Mei-Ying. Irregular Oscillation of Bi-disperse Granular Gas in Cyclic Three Compartments[J]. Chin. Phys. Lett., 2012, 29(3): 1961-1963
[8] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 1961-1963
[9] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 1961-1963
[10] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1961-1963
[11] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1961-1963
[12] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1961-1963
[13] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 1961-1963
[14] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 1961-1963
[15] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 1961-1963
Viewed
Full text


Abstract