Chin. Phys. Lett.  2005, Vol. 22 Issue (9): 2437-2440    DOI:
Original Articles |
Effects of Cross-Correlation Colour Noises on Tumour Growth Process
WANG Xian-Ju1,2;ZENG Chang-Chun1; DENG Xiao-Yuan1;LIU Song-Hao1;LIU Liang-Gang3
1Laboratory of Photonic CM, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631 2Department of Basic Knowledge, Guangzhou Navy Academy, Guangzhou 510431 3Department of Physics, Sun Yat-Sen University, Guangzhou 510275
Cite this article:   
WANG Xian-Ju, ZENG Chang-Chun, DENG Xiao-Yuan et al  2005 Chin. Phys. Lett. 22 2437-2440
Download: PDF(236KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a tumour cell growth process model including a multiplicative coloured noise and an additive coloured noise correlated. How the noise cross-correlation intensity λ and correlation time τ can affect the steady state properties of tumour cell growth model are discussed by solving an approximative Fokker--Planck equation. It is found that the increase of noise correlation time τ can cause the tumour cell number increasing, but the increase of multiplicative noise intensity can cause the tumour cell number extinction. We also find that the increase of cross-correlation intensity λ in the case of 0 <λ<1 can cause the tumour cell number extinction, whereas increase of cross-correlation intensity λ in the case of λ < 0 can cause the tumour cell number increasing.
Keywords: 87.10.+e      05.40.-a      02.50.Ey     
Published: 01 September 2005
PACS:  87.10.+e  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.50.Ey (Stochastic processes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I9/02437
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xian-Ju
ZENG Chang-Chun
DENG Xiao-Yuan
LIU Song-Hao
LIU Liang-Gang
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 2437-2440
[2] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 2437-2440
[3] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 2437-2440
[4] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 2437-2440
[5] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 2437-2440
[6] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 2437-2440
[7] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 2437-2440
[8] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 2437-2440
[9] ZHANG Lu, ZHONG Su-Chuan, PENG Hao, LUO Mao-Kang** . Stochastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise[J]. Chin. Phys. Lett., 2011, 28(9): 2437-2440
[10] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 2437-2440
[11] LI Chun, MEI Dong-Cheng, ** . Effects of Time Delay on Stability of an Unstable State in a Bistable System with Correlated Noises[J]. Chin. Phys. Lett., 2011, 28(4): 2437-2440
[12] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 2437-2440
[13] WANG Shao-Hua, YANG Ming**, WU Da-Jin . Diffusion of Active Particles Subject both to Additive and Multiplicative Noises[J]. Chin. Phys. Lett., 2011, 28(2): 2437-2440
[14] LÜ, Yan**, BAO Jing-Dong . Inertial Lévy Flight with Nonlinear Friction[J]. Chin. Phys. Lett., 2011, 28(11): 2437-2440
[15] HE Zheng-You, ZHOU Yu-Rong** . Vibrational and Stochastic Resonance in the FitzHugh–Nagumo Neural Model with Multiplicative and Additive Noise[J]. Chin. Phys. Lett., 2011, 28(11): 2437-2440
Viewed
Full text


Abstract