Chin. Phys. Lett.  2002, Vol. 19 Issue (9): 1225-1227    DOI:
Original Articles |
Characteristic Manifold and Painlevé Integrability: Fifth-Order Schwarzian Korteweg-de Type Equation
TANG Xiao-Yan1,2;HU Heng-Chun2,3
1Department of Physics, Shanghai Jiao Tong University, Shanghai 200030 2Abdus Salam International Centre for Theoretical Physics, Trieste, Italy 3China University of Mining and Technology, Beijing 100083
Cite this article:   
TANG Xiao-Yan, HU Heng-Chun 2002 Chin. Phys. Lett. 19 1225-1227
Download: PDF(185KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The single valued behaviour of the characteristic manifold is seldom considered when analysing the Painlevé property of a partial differential equation. Considering this, We take a simple example-the generalized fifth-order Schwarzian Korteweg-de Vries equation-to emphasize the usefulness to include the analysis of the single valued properties about the characteristic manifold in the Pianlevé test. The result shows that some types of Schwarzian equations may not be Painlevé integrable, though many of them may be.
Keywords: 03.40.Kf      02.30.Jr     
Published: 01 September 2002
PACS:  03.40.Kf  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2002/V19/I9/01225
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Xiao-Yan
HU Heng-Chun
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1225-1227
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 1225-1227
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1225-1227
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 1225-1227
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 1225-1227
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 1225-1227
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 1225-1227
[8] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 1225-1227
[9] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 1225-1227
[10] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 1225-1227
[11] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 1225-1227
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1225-1227
[13] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1225-1227
[14] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 1225-1227
[15] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1225-1227
Viewed
Full text


Abstract