Chin. Phys. Lett.  2002, Vol. 19 Issue (9): 1228-1230    DOI:
Original Articles |
An Automated Jacobi Elliptic Function Method for Finding Periodic Wave Solutions to Nonlinear Evolution Equations
LIU Yin-Ping;LI Zhi-Bin
Department of Computer Science, East China Normal University, Shanghai 200062
Cite this article:   
LIU Yin-Ping, LI Zhi-Bin 2002 Chin. Phys. Lett. 19 1228-1230
Download: PDF(177KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We describe the Jacobi elliptic function method for finding exact periodic wave solutions to nonlinear evolution equations. We present a Maple packaged automated Jacobi elliptic function method which can entirely automatically output the exact periodic wave solutions. The effectiveness of the automated Jacobi elliptic function method is demonstrated using as examples the applications to a variety of equations with physical interest. Not only are the previously known solutions recovered but in some cases new solutions and more general form of solutions are obtained.
Keywords: 03.40.Kf      04.30.Nk      02.90.+p      03.65.Fd     
Published: 01 September 2002
PACS:  03.40.Kf  
  04.30.Nk (Wave propagation and interactions)  
  02.90.+p (Other topics in mathematical methods in physics)  
  03.65.Fd (Algebraic methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2002/V19/I9/01228
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Yin-Ping
LI Zhi-Bin
Related articles from Frontiers Journals
[1] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 1228-1230
[2] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 1228-1230
[3] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1228-1230
[4] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 1228-1230
[5] ZHU Yin . Measurement of the Speed of Gravity[J]. Chin. Phys. Lett., 2011, 28(7): 1228-1230
[6] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 1228-1230
[7] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 1228-1230
[8] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 1228-1230
[9] ZHA Xin-Wei**, MA Gang-Long . Classification of Four-Qubit States by Means of a Stochastic Local Operation and the Classical Communication Invariant[J]. Chin. Phys. Lett., 2011, 28(2): 1228-1230
[10] YANG Xiao-Song, LIU San-Qiu, **, LI Xiao-Qing, . Modulational Instability for Gravitoelectromagnetic Perturbations with Longitudinal and Transverse Modes[J]. Chin. Phys. Lett., 2011, 28(10): 1228-1230
[11] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 1228-1230
[12] FAN Hong-Yi, REN Gang. Evolution of Number State to Density Operator of Binomial Distribution in the Amplitude Dissipative Channel[J]. Chin. Phys. Lett., 2010, 27(5): 1228-1230
[13] LV Cui-Hong, FAN Hong-Yi,. A New Kind of Integration Transformation in Phase Space Related to Two Mutually Conjugate Entangled-State Representations and Its Uses in Weyl Ordering of Operators[J]. Chin. Phys. Lett., 2010, 27(5): 1228-1230
[14] D. Agboola. Solutions to the Modified Pöschl-Teller Potential in D-Dimensions[J]. Chin. Phys. Lett., 2010, 27(4): 1228-1230
[15] FAN Hong-Yi, JIANG Nian-Quan. New Approach for Normalizing Photon-Added and Photon-Subtracted Squeezed States[J]. Chin. Phys. Lett., 2010, 27(4): 1228-1230
Viewed
Full text


Abstract