ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Controlling Directional Emission of Ions Attached on Surface of Nanoparticles |
Shuai Ben, Jia-Ying Liang, Yu Pei, Xiao-Hong Song*, and Wei-Feng Yang* |
School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570288, China |
|
Cite this article: |
Shuai Ben, Jia-Ying Liang, Yu Pei et al 2024 Chin. Phys. Lett. 41 113201 |
|
|
Abstract The interaction between lasers and nanoparticles holds significant theoretical and practical importance. Here, we investigate the near-field enhancement effects on silver nanotriangles and nanodiscs under ultrafast laser pulses, as well as the dynamics of protons and ions attached to the nanoparticle surfaces. By adjusting the size parameters of the nanoparticles, we explore the near-field enhancement effects and proton emission dynamics at different laser wavelengths. The results demonstrate that nanoparticles with varying morphologies substantially impact the proton momentum spectrum. The directional proton emission of nanotriangle structures is more pronounced compared to that of nanodiscs, and this effect can be further enhanced by adjusting the laser wavelength. Additionally, manipulating the thickness of particles also controls the Mie scattering phenomenon of light. Finally, we qualitatively discuss the emission processes of alpha particles and $^{9}$C$^{6+}$ heavy ions. This research has important implications for proton and heavy ion radiotherapy in cancer treatment and targeted drug delivery, while providing theoretical foundations for understanding, characterizing, and controlling experimental studies of nanosystems with significant potential for expanding research into microdynamic behavior in complex nanomaterial superstructures.
|
|
Received: 17 July 2024
Published: 14 November 2024
|
|
PACS: |
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
33.20.Xx
|
(Spectra induced by strong-field or attosecond laser irradiation)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
87.15.ht
|
(Ultrafast dynamics; charge transfer)
|
|
|
|
|
[1] | Wang Y L, Lai X Y, Yu S G et al. 2020 Phys. Rev. Lett. 125 063202 | [2] | Tong J H, Liu X W, Dong W H et al. 2022 Phys. Rev. Lett. 129 173201 | [3] | Zhu M, Tong J H, Liu X W, et al. 2024 Light: Sci. & Appl. 13 18 | [4] | Ditmire T, Smith R A, Tisch J W G, and Hutchinson M H R 1997 Phys. Rev. Lett. 78 3121 | [5] | Taguchi T, Jr. Antonsen T M, and Milchberg H M 2004 Phys. Rev. Lett. 92 205003 | [6] | Donnelly T D, Ditmire T, Neuman K, Perry M D, and Falcone R W 1996 Phys. Rev. Lett. 76 2472 | [7] | Schütte B, Peltz C, Austin D R et al. 2018 Phys. Rev. Lett. 121 063202 | [8] | Ndabashimiye G, Ghimire S, Wu M X et al. 2016 Nature 534 520 | [9] | Tancogne-Dejean N, Mücke O D, Kärtner F X, and Rubio A 2017 Nat. Commun. 8 745 | [10] | Tancogne-Dejean N, Mücke O D, Kärtner F X, and Rubio A 2017 Phys. Rev. Lett. 118 087403 | [11] | Li L, Lan P F, Zhu X S et al. 2019 Phys. Rev. Lett. 122 193901 | [12] | Zuo R X, Trautmann A, Wang G F et al. 2021 Ultrafast Sci. 2021 9861923 | [13] | Lang Y, Peng Z, and Zhao Z 2022 Chin. Phys. Lett. 39 114201 | [14] | Zuo R X, Song X H, Ben S, Meier T, and Yang W F 2023 Phys. Rev. Res. 5 L022040 | [15] | Beydoun D, Amal R, Low G, and McEvoy S 1999 J. Nanopart. Res. 1 439 | [16] | Watanabe K, Menzel D, Nilius N, and Freund H J 2006 Chem. Rev. 106 4301 | [17] | Li H X, Bian Z F, Zhu J et al. 2007 J. Am. Chem. Soc. 129 8406 | [18] | Klaine S J, Alvarez P J J, Batley G E et al. 2008 Environ. Toxicol. Chem. 27 1825 | [19] | Benabid F, Couny F, Knight J C, Birks T A, and Russell P S J 2005 Nature 434 488 | [20] | Gao J H, Liang G L, Zhang B, Kuang Y, Zhang X X, and Xu B 2007 J. Am. Chem. Soc. 129 1428 | [21] | Zhao W R, Chen H R, Li Y S et al. 2008 Adv. Funct. Mater. 18 2780 | [22] | Zhu Y, Ikoma T, Hanagata N, and Kaskel S 2010 Small 6 471 | [23] | Lachaine R, Boulais É, and Meunier M 2014 ACS Photonics 1 331 | [24] | Wilson R R 1946 Radiology 47 487 | [25] | Kraft G 2000 Nucl. Instrum. Methods Phys. Res. Sect. A 454 1 | [26] | Chatterjee A, Alpen E L, Tobias C A et al. 1981 Int. J. Radiat. Oncol. Biol. Phys. 7 503 | [27] | Chatterjee A, Tobias C A, and Lyman J T 1976 Spallation Nuclear Reactions and Their Applications (Berlin: Springer) pp 169–191 | [28] | Li Q, Furusawa Y, Kanazawa M et al. 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 1237 | [29] | Zherebtsov S, Fennel T, Plenge J et al. 2011 Nat. Phys. 7 656 | [30] | Krüger M, Schenk M, and Hommelhoff P 2011 Nature 475 78 | [31] | Herink G, Solli D R, Gulde M, and Ropers C 2012 Nature 483 190 | [32] | Dombi P, Hörl A, Rácz P et al. 2013 Nano Lett. 13 674 | [33] | Süßmann F, Seiffert L, Zherebtsov S et al. 2015 Nat. Commun. 6 7944 | [34] | Seiffert L, Liu Q, Zherebtsov S et al. 2017 Nat. Phys. 13 766 | [35] | Sun F H, Li H, Song S S et al. 2021 Nanophotonics 10 2651 | [36] | Saydanzad E, Powell J, Summers A et al. 2023 Nanophotonics 12 1931 | [37] | Hickstein D D, Dollar F, Ellis J L et al. 2014 ACS Nano 8 8810 | [38] | Rupp P, Burger C, Kling N G et al. 2019 Nat. Commun. 10 4655 | [39] | Rosenberger P, Rupp P, Ali R et al. 2020 ACS Photonics 7 1885 | [40] | Zhang W B, Dagar R, Rosenberger P et al. 2022 Optica 9 551 | [41] | Sun F H, Qu Q W, Li H et al. 2024 Nat. Commun. 15 5150 | [42] | Mie G 1908 Ann. Phys. 330 377 | [43] | Seiffert L 2018 Semi-Classical Description of Near-Field Driven Attosecond Photoemission from Nanostructures PhD Dissertation (Universität Rostock) | [44] | Liu Q C, Zherebtsov S, Seiffert L et al. 2019 New J. Phys. 21 073011 | [45] | Jin R C, Cao Y W, Mirkin C A et al. 2001 Science 294 1901 | [46] | Callegari A, Tonti D, and Chergui M 2003 Nano Lett. 3 1565 | [47] | Kim F, Song J H, and Yang P 2002 J. Am. Chem. Soc. 124 14316 | [48] | Ye W 2023 Nano Lett. 23 7658 | [49] | Maillard M, Huang P, and Brus L 2003 Nano Lett. 3 1611 | [50] | Ammosov M V, Delone N B, and Krainov V P 1986 Proc. SPIE 0664 1191 | [51] | Li X K, Liu X W, Wang C C et al. 2024 Light: Sci. & Appl. 13 250 | [52] | Liu Q C, Seiffert L, Süßmann F et al. 2020 ACS Photonics 7 3207 | [53] | Peltz C, Powell J A, Rupp P et al. 2022 New J. Phys. 24 043024 | [54] | Powell J A, Li J X, Summers A et al. 2022 ACS Photonics 9 3515 | [55] | Dienstbier P, Paschen T, and Hommelhoff P 2021 Nanophotonics 10 3717 | [56] | Kim S, Jin J H, Kim Y J, Park I Y, Kim Y, and Kim S W 2008 Nature 453 757 | [57] | Zhang H D, Liu X W, Jin F C et al. 2021 Chin. Phys. Lett. 38 063201 | [58] | Jia G R, Zhao D X, Zhang S S et al. 2023 Chin. Phys. Lett. 40 103202 | [59] | Qi K, Zhang Y, Li J et al. 2021 ACS Nano 15 7682 | [60] | Zhao L, Chi Y, Yuan Q, Li N, Yan W F, and Li X T 2013 J. Colloid Interface Sci. 390 70 | [61] | Srnová-Šloufová I, Lednický F, Gemperle A, and Gemperlová J 2000 Langmuir 16 9928 | [62] | Ah C S, Hong S D, and Jang D J 2001 J. Phys. Chem. B 105 7871 | [63] | Cao Y W, Jin R C, and Mirkin C A 2001 J. Am. Chem. Soc. 123 7961 | [64] | Peng Z and Yang H 2009 J. Am. Chem. Soc. 131 7542 | [65] | Kim Y, Hong J W, Lee Y W et al. 2010 Angew. Chem. Int. Ed. 49 10197 | [66] | Ye F, Liu H, Hu W W et al. 2012 Dalton Trans. 41 2898 | [67] | Kim S W, Kim M, Lee W Y, and Hyeon T 2002 J. Am. Chem. Soc. 124 7642 | [68] | Li Y G, Zhou P, Dai Z H, Hu Z X, Sun P P, and Bao J C 2006 New J. Chem. 30 832 | [69] | Cheng F, Ma H, Li Y, and Chen J 2007 Inorg. Chem. 46 788 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|