Chin. Phys. Lett.  2024, Vol. 41 Issue (6): 063201    DOI: 10.1088/0256-307X/41/6/063201
ATOMIC AND MOLECULAR PHYSICS |
Pressure-Induced Distinct Self-Trapped Exciton Emission in Sb$^{3+}$-Doped Cs$_{2}$NaInCl$_{6}$ Double Perovskite
Youjia Feng1†, Yaping Chen1†, Leyao Wang1, Jiaxiang Wang1, Duanhua Chang1, Yifang Yuan1, Min Wu2, Ruijing Fu3, Lili Zhang1*, Qinglin Wang2*, Kai Wang2, Haizhong Guo1, and Lingrui Wang1*
1Key Laboratory of Materials Physics (Ministry of Education), School of Physics, Zhengzhou University, Zhengzhou 450001, China
2Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
3College of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
Cite this article:   
Youjia Feng, Yaping Chen, Leyao Wang et al  2024 Chin. Phys. Lett. 41 063201
Download: PDF(4041KB)   PDF(mobile)(7111KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Cs$_{2}$NaInCl$_{6}$ double perovskite is one of the most promising lead-free perovskites due to its exceptional stability and straightforward synthesis. However, it faces challenges related to inefficient photoluminescence. Doping and high pressure are employed to tailor the optical properties of Cs$_{2}$NaInCl$_{6}$. Herein, Sb$^{3+}$ doped Cs$_{2}$NaInCl$_{6}$ (Sb$^{3+}$:Cs$_{2}$NaInCl$_{6})$ was synthesized and it exhibits blue emission with a photoluminescence quantum yield of up to 37.3%. Further, by employing pressure tuning, a blue stable emission under a very wide range from 2.7 GPa to 9.8 GPa is realized in Sb$^{3+}$:Cs$_{2}$NaInCl$_{6}$. Subsequently, the emission intensity of Sb$^{3+}$:Cs$_{2}$NaInCl$_{6}$ experiences a significant increase (3.3 times) at 19.0 GPa. It is revealed that the pressure-induced distinct emissions can be attributed to the carrier self-trapping and detrapping between Cs$_{2}$NaInCl$_{6}$ and Sb$^{3+}$. Notably, the lattice compression in the cubic phase inevitably modifies the band gap of Sb$^{3+}$:Cs$_{2}$NaInCl$_{6}$. Our findings provide valuable insights into effects of the high pressure in further boosting unique emission characteristics but also offer promising opportunities for development of doped double perovskites with enhanced optical functionalities.
Received: 27 March 2024      Published: 20 June 2024
PACS:  32.30.Jc (Visible and ultraviolet spectra)  
  32.30.Rj (X-ray spectra)  
  32.50.+d (Fluorescence, phosphorescence (including quenching))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/6/063201       OR      https://cpl.iphy.ac.cn/Y2024/V41/I6/063201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Youjia Feng
Yaping Chen
Leyao Wang
Jiaxiang Wang
Duanhua Chang
Yifang Yuan
Min Wu
Ruijing Fu
Lili Zhang
Qinglin Wang
Kai Wang
Haizhong Guo
and Lingrui Wang
[1] Chen A, Jing X L, Wang T Y, Zhao T T, Zhang Y, Zhou D L, Sun R, Zhang X T, Liu R, Liu B, Li Q J, and Liu B B 2022 Inorg. Chem. 61 6488
[2] Zhao X G, Yang D W, Ren J C, Sun Y H, Xiao Z W, and Zhang L J 2018 Joule 2 1662
[3] Igbari F, Wang Z K, and Liao L S 2019 Adv. Energy Mater. 9 1803150
[4] Maughan A E, Ganose A M, Scanlon D O, and Neilson J R 2019 Chem. Mater. 31 1184
[5] Bibi A, Lee I, Nah Y, Allam O, Kim H, Quan L N, Tang J, Walsh A, Jang S S, Sargent E H, and Kim D H 2021 Mater. Today 49 123
[6] Wolf N R, Connor B A, Slavney A H, and Karunadasa H I 2021 Angew. Chem. Int. Ed. 60 16264
[7] Zeng R S, Zhang L L, Xue Y, Ke B, Zhao Z, Huang D, Wei Q L, Zhou W C, and Zou B S 2020 J. Phys. Chem. Lett. 11 2053
[8] Arfin H, Kshirsagar A S, Kaur J, Mondal B, Xia Z, Chakraborty S, and Nag A 2020 Chem. Mater. 32 10255
[9] Liu X Y, Xu X, Li B, Yang L L, Li Q, Jiang H, and Xu D S 2020 Small 16 2002547
[10] Noculak A, Morad V, McCall K M, Yakunin S, Shynkarenko Y, Wörle M, and Kovalenko M V 2020 Chem. Mater. 32 5118
[11] Ahmad R, Zdražil L, Kalytchuk S, Naldoni A, Rogach A L, Schmuki P, Zboril R, and Kment Š 2021 ACS Appl. Mater. & Interfaces 13 47845
[12] Zhou B, Liu Z X, Fang S F, Zhong H Z, Tian B B, Wang Y, Li H N, Hu H L, and Shi Y M 2021 ACS Energy Lett. 6 3343
[13] Zhu D X, Zaffalon M L, Zito J, Cova F, Meinardi F, De Trizio L, Infante I, Brovelli S, and Manna L 2021 ACS Energy Lett. 6 2283
[14] Saikia S, Joshi A, Arfin H, Badola S, Saha S, and Nag A 2022 Angew. Chem. Int. Ed. 61 e202201628
[15] Zhou B, Liu Z X, Fang S F, Nie J H, Zhong H Z, Hu H L, Li H N, and Shi Y M 2022 J. Phys. Chem. Lett. 13 9140
[16] Jiang F, Wu Z N, Lu M, Gao Y B, Li X, Bai X, Ji Y, and Zhang Y 2023 Adv. Mater. 35 2211088
[17] Jing Y Y, Liu Y, Zhao J, and Xia Z G 2019 J. Phys. Chem. Lett. 10 7439
[18] Jing X L, Zhou D L, Sun R, Zhang Y, Li Y C, Li X D, Li Q J, Song H W, and Liu B B 2021 Adv. Funct. Mater. 31 2100930
[19] Shi Y, Zhao W Y, Ma Z W, Xiao G J, and Zou B 2021 Chem. Sci. 12 14711
[20] Liao Q H, Meng Q, Jing L, Pang J M, Pang Q, and Zhang J Z 2021 J. Phys. Chem. C 125 18372
[21] Zhang L, Liu Z T, Sun X N, Niu G M, Jiang J T, Fang Y Y, Duan D F, Wang K, Sui L Z, Yuan K J, Wu G R, and Zou B 2022 Adv. Opt. Mater. 10 2101892
[22] Schettino V and Bini R 2003 Phys. Chem. Chem. Phys. 5 1951
[23] Chen B, Lin J F, Chen J H, Zhang H Z, and Zeng Q S 2016 MRS Bull. 41 473
[24] Mao H K, Chen B, Chen J H, Li K, Lin J F, Yang W G, and Zheng H Y 2016 Matter Radiat. Extremes 1 59
[25] Zhang L J, Wang Y C, Lv J, and Ma Y M 2017 Nat. Rev. Mater. 2 17005
[26] Gao F F, Qin Y, Li Z G, Li W, Hao J, Li X, Liu Y G, Howard C J, Wu X, Jiang X X, Lin Z S, Lu P X, and Bu X H 2024 ACS Nano 18 3251
[27] Zhao D L, Cong M, Liu Z, Ma Z W, Wang K, Xiao G J, and Zou B 2023 Cell Rep. Phys. Sci. 4 101445
[28] Yang H J, Shi W W, Nagaoka Y, Liu Z X, Li R P, and Chen O 2023 J. Phys. Chem. C 127 2407
[29] Zhang J, Li M X, Wang D H, Chu B H, Zhang S F, Xu Q F, and Wang K 2023 J. Mater. Chem. A 11 19427
[30] Zhao W Y, Ma Z W, Shi Y, Fu R J, Wang K, Sui Y M, Xiao G J, and Zou B 2023 Cell Rep. Phys. Sci. 4 101663
[31] Fang Y Y, Zhang L, Yu Y S, Yang X Y, Wang K, and Zou B 2021 CCS Chem. 3 2203
[32] Guo S H, Zhao Y S, Bu K J, Fu Y P, Luo H, Chen M T, Hautzinger M P, Wang Y Q, Jin S, Yang W G, and Lü X J 2020 Angew. Chem. Int. Ed. 59 17533
[33] Liang Y F, Wu M, Tian C, Huang X L, Huang Y P, Lekina Y, Shen Z X, and Yang X Y 2021 ACS Appl. Energy Mater. 4 10003
[34] Guo S H, Bu K J, Li J W, Hu Q Y, Luo H, He Y H, Wu Y H, Zhang D Z, Zhao Y S, Yang W G, Kanatzidis M G, and Lü X J 2021 J. Am. Chem. Soc. 143 2545
[35] Geng T, Wei S, Zhao W Y, Ma Z W, Fu R J, Xiao G J, and Zou B 2021 Inorg. Chem. Front. 8 1410
[36] Wang J X, Wang L R, Wang F, Jiang S, and Guo H Z 2021 Phys. Chem. Chem. Phys. 23 19308
[37] Jaffe A, Lin Y, Mao W L, and Karunadasa H I 2017 J. Am. Chem. Soc. 139 4330
[38] Zhang L, Liu C M, Wang L R, Liu C L, Wang K, and Zou B 2018 Angew. Chem. Int. Ed. 57 11213
[39] Wu L W, Dong Z Y, Zhang L, Liu C L, Wang K, and Zou B 2019 ChemSusChem 12 3971
[40] Wang J X, Wang L R, Li Y Q, Fu R J, Feng Y J, Chang D H, Yuan Y F, Gao H, Jiang S, Wang F, Guo E J, Cheng J G, Wang K, Guo H Z, and Zou B 2022 Adv. Sci. 9 2203442
[41] Li Q, Wang Y G, Pan W C, Yang W G, Zou B, Tang J, and Quan Z W 2017 Angew. Chem. Int. Ed. 56 15969
[42] Wang L R, Yao P P, Wang F, Li S F, Chen Y P, Xia T Y, Guo E J, Wang K, Zou B, and Guo H Z 2020 Adv. Sci. 7 1902900
[43] Ma Z W, Li F F, Sui L Z, Shi Y, Fu R J, Yuan K J, Xiao G J, and Zou B 2020 Adv. Opt. Mater. 8 2000713
[44] Zhang L, Li S X, Sun H Y, Jiang Q W, Wang Y, Fang Y Y, Shi Y, Duan D F, Wang K, Jiang H, Sui L Z, Wu G R, Yuan K J, and Zou B 2023 Angew. Chem. Int. Ed. 62 e202301573
[45] Yuan Y F, Zhu X D, Zhou Y H, Chen X L, An C, Zhou Y, Zhang R R, Gu C C, Zhang L L, Li X J, and Yang Z R 2021 NPG Asia Mater. 13 15
[46] Schmidt T, Lischka K, and Zulehner W 1992 Phys. Rev. B 45 8989
[47] Fang Y Y, Zhang L, Wu L W, Yan J J, Lin Y, Wang K, Mao W L, and Zou B 2019 Angew. Chem. Int. Ed. 58 15249
[48] Zhang L, Wu L W, Wang K, and Zou B 2019 Adv. Sci. 6 1801628
[49] de Jong M, Seijo L, Meijerink A, and Rabouw F T 2015 Phys. Chem. Chem. Phys. 17 16959
[50] Wang J X, Yuan Y F, Liu C L, Fu R J, Wang L R, Zhang F, Ma L, Jiang S, Shi Z F, and Guo H Z 2023 Phys. Rev. B 107 214111
Related articles from Frontiers Journals
[1] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 063201
[2] Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach[J]. Chin. Phys. Lett., 2017, 34(1): 063201
[3] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 063201
[4] Wei Xia, Shao-Yang Dai, Yin Zhang, Kun-Qian Li, Qi Yu, Xu-Zong Chen. Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2016, 33(05): 063201
[5] Shi-Quan Cao, Mao-Gen Su, Dui-Xiong Sun, Qi Min, Chen-Zhong Dong. Spatial-Resolved Measurement and Analysis of Extreme-Ultraviolet Emission Spectra from Laser-Produced Al Plasmas[J]. Chin. Phys. Lett., 2016, 33(04): 063201
[6] K. Chaudhary, S. Rosalan, M. S. Aziz, M. Bahadoran, J Ali, P. P. Yupapin, N. Bidin, Saktioto. Erratum: Laser-Induced Graphite Plasma Kinetic Spectroscopy under Different Ambient Pressures [Chin. Phys. Lett. Vol. 32, No. 4, 043201(2015)][J]. Chin. Phys. Lett., 2015, 32(06): 063201
[7] ZOU Hong-Xin, WU Yue, CHEN Guo-Zhu, SHEN Yong, LIU Qu. Generation of Continuous-Wave 194 nm Laser for Mercury Ion Optical Frequency Standard[J]. Chin. Phys. Lett., 2015, 32(5): 063201
[8] K. Chaudhary, S. Rosalan, M. S. Aziz, M. Bohadoran, J Ali, P. P. Yupapin, N. Bidin, Saktioto. Laser-Induced Graphite Plasma Kinetic Spectroscopy under Different Ambient Pressures[J]. Chin. Phys. Lett., 2015, 32(4): 063201
[9] WANG Qiang, LIN Yi-Ge, LI Ye, LIN Bai-Ke, MENG Fei, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun. Observation of Spin Polarized Clock Transition in 87Sr Optical Lattice Clock[J]. Chin. Phys. Lett., 2014, 31(12): 063201
[10] XIE Feng, LI Dan, JIA Feng-Dong, ZHONG Zhi-Ping. An Analytical Derivation of a Symmetric Peak with Width Narrower than the Peak Width of the Probing Laser[J]. Chin. Phys. Lett., 2014, 31(1): 063201
[11] WANG Dong-Ying, WANG Yan-Fei, TAO Zhi-Ming, ZHANG Sheng-Nan HONG Ye-Long, ZHUANG Wei, CHEN Jing-Biao . Cs 455 nm Nonlinear Spectroscopy with Ultra-narrow Linewidth[J]. Chin. Phys. Lett., 2013, 30(6): 063201
[12] SUN Shao-Hua, LIU Xiao-Liang, LIU Zuo-Ye, WANG Xiao-Shan, DING Peng-Ji, LIU Qing-Cao, GUO Ze-Qin, HU Bi-Tao. The Angular Distribution of Optical Emission Spectroscopy from a Femtosecond Laser Filament in Air[J]. Chin. Phys. Lett., 2013, 30(4): 063201
[13] YANG Zhi-Hu, XU Qiu-Mei, GUO Yi-Pan, WU Ye-Hong, SONG Zhang-Yong. Visible Light Emission in Highly Charged Kr17+ Ions Colliding with an Al Surface[J]. Chin. Phys. Lett., 2013, 30(1): 063201
[14] CAO Xiang-Nian, SU Mao-Gen, SUN Dui-Xiong, FU Yan-Biao, DONG Chen-Zhong. Theoretical Analysis of 4f and 5p Inner-Shell Excitations of W-W3+ Ions[J]. Chin. Phys. Lett., 2012, 29(11): 063201
[15] ZHUANG Wei, CHEN Jing-Biao** . Feasibility of Extreme Ultraviolet Active Optical Clock[J]. Chin. Phys. Lett., 2011, 28(8): 063201
Viewed
Full text


Abstract