THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
|
|
|
|
$Z_{cs}(4000)^+$ and $Z_{cs}(4220)^+$ in a Multiquark Color Flux-Tube Model |
Yi-Heng Wang, Jia Wei, Chun-Sheng An*, and Cheng-Rong Deng* |
School of Physical Science and Technology, Southwest University, Chongqing 400715, China |
|
Cite this article: |
Yi-Heng Wang, Jia Wei, Chun-Sheng An et al 2023 Chin. Phys. Lett. 40 021201 |
|
|
Abstract We systematically investigate the mass spectrum, spatial configuration and magnetic moment of the ground and p-wave states $[cu][\bar{c}\bar{s}]$ with various color-spin configurations in a multiquark color flux-tube model. Numerical results indicate that the state $Z_{cs}(4000)^+$ can be described as the compact state $[cu][\bar{c}\bar{s}]$ with $1^3\!S_1$. Its main color-spin configuration is $[cu]^{1}_{\boldsymbol{6}_c} [\bar{c}\bar{s}]^{1}_{\bar{\boldsymbol{6}}_c}$ and its magnetic moment is 0.73$\mu_{\scriptscriptstyle{N}}$. The state $Z_{cs}(4220)^+$ can be depicted as the compact state $[cu][\bar{c}\bar{s}]$ with $1^1\!P_1$ (or $1^3\!P_1$). Its main color-spin configuration is $[cu]^{0}_{\bar{\boldsymbol{3}}_c}[\bar{c}\bar{s}]^{0}_{\boldsymbol{3}_c}$ (or $[cu]^{0}_{\bar{\boldsymbol{3}}_c}[\bar{c}\bar{s}]^{1}_{\boldsymbol{3}_c}$) and its magnetic moment is 0.12$\mu_{\scriptscriptstyle{N}}$ (or 0.64$\mu_{\scriptscriptstyle{N}}$). The physical state should be the mixture of these two different color-spin configurations and deserves further investigation. In addition, we also predict the properties of the states $[cu][\bar{c}\bar{s}]$ with other quantum numbers in the model.
|
|
Received: 14 November 2022
Published: 04 February 2023
|
|
|
|
|
|
[1] | Ablikim M et al. (BESIII Collaboration) 2021 Phys. Rev. Lett. 126 102001 |
[2] | Aaij R et al. (LHCb Collaboration) 2021 Phys. Rev. Lett. 127 082001 |
[3] | Lee S H, Nielsen M, and Wiedner U 2009 J. Korean Phys. Soc. 55 424 |
[4] | Ebert D, Faustov R N, and Galkin V O 2006 Phys. Lett. B 634 214 |
[5] | Dias J M, Liu X, and Nielsen M 2013 Phys. Rev. D 88 096014 |
[6] | Voloshin M B 2019 Phys. Lett. B 798 135022 |
[7] | Chen D Y, Liu X, and Matsuki T 2013 Phys. Rev. Lett. 110 232001 |
[8] | Maiani L, Polosa A D, and Riquer V 2021 Sci. Bull. 66 1616 |
[9] | Wang Z G 2021 Chin. Phys. C 45 073107 |
[10] | Wan B D and Qiao C F 2021 Nucl. Phys. B 968 115450 |
[11] | Shi P P, Huang F, and Wang W L 2021 Phys. Rev. D 103 094038 |
[12] | Karliner M and Rosner J L 2021 Phys. Rev. D 104 034033 |
[13] | Meng L, Wang B, and Zhu S L 2020 Phys. Rev. D 102 111502 |
[14] | Guo Z H and Oller J A 2021 Phys. Rev. D 103 054021 |
[15] | Yang Z, Cao X, Guo F K, Nieves J, and Valderrama M P 2021 Phys. Rev. D 103 074029 |
[16] | Chen H X 2022 Phys. Rev. D 105 094003 |
[17] | Han S and Xiao L Y 2022 Phys. Rev. D 105 054008 |
[18] | Meng L, Wang B, Wang G J, and Zhu S L 2021 Sci. Bull. 66 2065 |
[19] | Ferretti J and Santopinto E 2022 Sci. Bull. 67 1209 |
[20] | Wang Z G 2022 Chin. Phys. C 46 103106 |
[21] | Chen H X, Chen W, Liu X, Liu Y R, and Zhu S L 2023 Rep. Prog. Phys. 86 026201 |
[22] | Takahashi T T, Suganuma H, Nemoto Y, and Matsufuru H 2002 Phys. Rev. D 65 114509 |
[23] | Vijande J, Fernandez F, and Valcarce A 2005 J. Phys. G 31 481 |
[24] | Scadron M D 1982 Phys. Rev. D 26 239 |
[25] | Bali G S 2000 Phys. Rev. D 62 114503 |
[26] | Deng C R and Zhu S L 2022 Sci. Bull. 67 1522 |
[27] | Hiyama E, Kino Y, and Kamimura M 2003 Prog. Part. Nucl. Phys. 51 223 |
[28] | Jaffe R L 2005 Phys. Rep. 409 1 |
[29] | Deng C R, Chen H, and Ping J L 2020 Phys. Rev. D 101 054039 |
[30] | Godfrey S and Kokoski R 1991 Phys. Rev. D 43 1679 |
[31] | Liu Y R, Huang P Z, Deng W Z, Chen X L, and Zhu S L 2004 Phys. Rev. C 69 035205 |
[32] | Wang G J, Chen R, Ma L, Liu X, and Zhu S L 2016 Phys. Rev. D 94 094018 |
[33] | Özdem U and Yıldırım A K 2021 Phys. Rev. D 104 054017 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|