Chin. Phys. Lett.  2023, Vol. 40 Issue (2): 020502    DOI: 10.1088/0256-307X/40/2/020502
GENERAL |
Characterizing Superradiant Phase of the Quantum Rabi Model
Yun-Tong Yang1,2 and Hong-Gang Luo1,2,3*
1School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
2Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
3Beijing Computational Science Research Center, Beijing 100084, China
Cite this article:   
Yun-Tong Yang and Hong-Gang Luo 2023 Chin. Phys. Lett. 40 020502
Download: PDF(2204KB)   PDF(mobile)(2555KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, a superradiant phase transition first predicted theoretically in the quantum Rabi model (QRM) has been verified experimentally. This further stimulates the interest in the study of the process of phase transition and the nature of the superradiant phase since the fundamental role of the QRM in describing the interaction of light and matter, and more importantly, the QRM contains rich physics deserving further exploration despite its simplicity. Here we propose a scheme consisting of two successive diagonalizations to accurately obtain the ground-state and excited states wavefunctions of the QRM in full parameter regime ranging from weak to deep-strong couplings. Thus, one is able to see how the phase transition occurs and how the photons populate in Fock space of the superradiant phase. We characterize the photon populations by borrowing the distribution concept in random matrix theory and find that the photon population follows a Poissonian-like distribution once the phase transition takes place and further exhibits the statistics of Gaussian unitary ensemble with increasing coupling strength. More interestingly, the photons in the excited states behave even like the statistics of Gaussian orthogonal ensemble. Our results not only deepen understanding on the superradiant phase transition but also provide an insight on the nature of the superradiant phase of the QRM and related models.
Received: 21 November 2022      Editors' Suggestion Published: 19 January 2023
PACS:  05.30.Rt (Quantum phase transitions)  
  64.60.A- (Specific approaches applied to studies of phase transitions)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/2/020502       OR      https://cpl.iphy.ac.cn/Y2023/V40/I2/020502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yun-Tong Yang and Hong-Gang Luo
[1] Forn-Díaz P, Lamata L, Rico E, Kono J, and Solano E 2019 Rev. Mod. Phys. 91 025005
[2] Kockum A F, Miranowicz A, De Liberato S, Savasta S, and Nori F 2019 Nat. Rev. Phys. 1 19
[3] Felicetti S and Boité A L 2020 Phys. Rev. Lett. 124 040404
[4] Garcia-Vidal F J, Ciuti C, and Ebbesen T W 2021 Science 373 eabd0336
[5] Blais A, Grimsmo A L, Girvin S M, and Wallraff A 2021 Rev. Mod. Phys. 93 025005
[6] Ashida Y, İmamoğlu A M C, and Demler E 2021 Phys. Rev. Lett. 126 153603
[7] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, and Schoelkopf R J 2004 Nature 431 162
[8] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hümmer T, Solano E, Marx A, and Gross R 2010 Nat. Phys. 6 772
[9] Casanova J, Romero G, Lizuain I, García-Ripoll J J, and Solano E 2010 Phys. Rev. Lett. 105 263603
[10] Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S, and Semba K 2017 Nat. Phys. 13 44
[11] Yoshihara F, Fuse T, Ao Z, Ashhab S, Kakuyanagi K, Saito S, Aoki T, Koshino K, and Semba K 2018 Phys. Rev. Lett. 120 183601
[12] Mueller N S, Okamura Y, Vieira B, Juergensen S, Lange H, Barros E B, Schulz F, and Reich S 2020 Nature 583 780
[13] Langford N K, Sagastizabal R, Kounalakis M, Dickel C, Bruno A, Luthi F, Thoen D J, Endo A, and D L 2017 Nat. Commun. 8 1715
[14] Lv D, An S, Liu Z, Zhang J N, Pedernales J S, Lamata L, Solano E, and Kim K 2018 Phys. Rev. X 8 021027
[15] Abah O, Puebla R, and Paternostro M 2020 Phys. Rev. Lett. 124 180401
[16] Devi A, Gunapala S D, Stockman M I, and Premaratne M 2020 Phys. Rev. A 102 013701
[17] Wang S P, Zhang G Q, Wang Y, Chen Z, Li T, Tsai J S, Zhu S Y, and You J Q 2020 Phys. Rev. Appl. 13 054063
[18] Hastrup J, Park K, Filip R, and Andersen U L 2021 Phys. Rev. Lett. 126 153602
[19] Bin Q, Wu Y, and Lü X Y 2021 Phys. Rev. Lett. 127 073602
[20] Mei Q X, Li B W, Wu Y K, Cai M L, Wang Y, Yao L, Zhou Z C, and Duan L M 2022 Phys. Rev. Lett. 128 160504
[21] Chu Y M, Zhang S L, Yu B Y, and Cai J M 2021 Phys. Rev. Lett. 126 010502
[22] Ilias T, Yang D, Huelga S F, and Plenio M B 2022 PRX Quantum 3 010354
[23] Romero G, Ballester D, Wang Y M, Scarani V, and Solano E 2012 Phys. Rev. Lett. 108 120501
[24] Lamata L, Parra-Rodriguez A, Sanz M, and Solano E 2018 Adv. Phys.: X 3 1457981
[25] Monroe C, Campbell W C, Duan L M, Gong Z X, Gorshkov A V, Hess P W, Islam R, Kim K, Linke N M, Pagano G, Richerme P, Senko C, and Yao N Y 2021 Rev. Mod. Phys. 93 025001
[26] Head-Marsden K, Flick J, Ciccarino C J, and Narang P 2021 Chem. Rev. 121 3061
[27] Hepp K and Lieb E H 1973 Ann. Phys. 76 360
[28] Wang Y K and Hioe F T 1973 Phys. Rev. A 7 831
[29] Carmichael H, Gardiner C, and Walls D 1973 Phys. Lett. A 46 47
[30] Dicke R H 1954 Phys. Rev. 93 99
[31] Garraway B M 2011 Philos. Trans. R. Soc. A 369 1137
[32] Rabi I I 1936 Phys. Rev. 49 324
[33] Rabi I I 1937 Phys. Rev. 51 652
[34] Ashhab S and Nori F 2010 Phys. Rev. A 81 042311
[35] Hwang M J and Choi M S 2010 Phys. Rev. A 82 025802
[36] De Liberato S and Ciuti C 2013 Phys. Rev. Lett. 110 133603
[37] Hwang M J, Puebla R, and Plenio M B 2015 Phys. Rev. Lett. 115 180404
[38] Ying Z J, Liu M, Luo H G, Lin H Q, and You J Q 2015 Phys. Rev. A 92 053823
[39] Liu M X, Chesi S, Ying Z J, Chen X S, Luo H G, and Lin H Q 2017 Phys. Rev. Lett. 119 220601
[40] Wang Y M, You W L, Liu M X, Dong Y L, Luo H G, Romero G, and You J Q 2018 New J. Phys. 20 053061
[41] Peng J, Rico E, Zhong J, Solano E, and Egusquiza I N L 2019 Phys. Rev. A 100 063820
[42] Zhu H J, Xu K, Zhang G F, and Liu W M 2020 Phys. Rev. Lett. 125 050402
[43] Garbe L, Bina M, Keller A, Paris M G A, and Felicetti S 2020 Phys. Rev. Lett. 124 120504
[44] Jiang X D, Lu B, Han C Y, Fang R H, Zhao M H, Ma Z H, Guo T, and Lee C 2021 Phys. Rev. A 104 043307
[45] Zhuang W F, Geng B, Luo H G, Guo G C, and Gong M 2021 Phys. Rev. A 104 053308
[46] Stránský P, Cejnar P, and Filip R 2021 Phys. Rev. A 104 053722
[47] Cai M L, Liu Z D, Zhao W D, Wu Y K, Mei Q X, Jiang Y, He L, Zhang X, Zhou Z C, and Duan L M 2021 Nat. Commun. 12 1126
[48] Chen X, Wu Z, Jiang M, Lü X Y, Peng X, and Du J 2021 Nat. Commun. 12 6281
[49]Chaikin P M and Lubensky T C 1995 Principles of Condensed Matter Physics (Cambridge: Cambridge University Press)
[50]Landau L D and Lifshitz E M 1980 Statistical Physics I & II 3rd edn (Amsterdam: Elsevier)
[51] Braak D 2011 Phys. Rev. Lett. 107 100401
[52] Chen Q H, Wang C, He S, Liu T, and Wang K L 2012 Phys. Rev. A 86 023822
[53] Xie Q T, Cui S, Cao J P, Amico L, and Fan H 2014 Phys. Rev. X 4 021046
[54] Wolf F A, Vallone F, Romero G, Kollar M, Solano E, and Braak D 2013 Phys. Rev. A 87 023835
[55] Bohigas O, Giannoni M J, and Schmit C 1984 Phys. Rev. Lett. 52 1
[56]Mehta M L 2004 Random Matrices 3rd edn (Amsterdam: Elsevier)
[57] Rossatto D Z, Villas-Bôas C J, Sanz M, and Solano E 2017 Phys. Rev. A 96 013849
[58]Belobrov P I, Zaslavskiǐ G M, and Tartakovskiǐ G K 1976 Sov. Phys.-JETP 44 945
[59] Milonni P W, Ackerhalt J R, and Galbraith H W 1983 Phys. Rev. Lett. 50 966
[60] Graham R and Höhnerbach M 1984 Phys. Lett. A 101 61
[61] Kuś M 1985 Phys. Rev. Lett. 54 1343
[62] Bonci L, Roncaglia R, West B J, and Grigolini P 1991 Phys. Rev. Lett. 67 2593
[63] Fukuo T, Ogawa T, and Nakamura K 1998 Phys. Rev. A 58 3293
[64] Emary C and Brandes T 2003 Phys. Rev. Lett. 90 044101
[65] Naether U, García-Ripoll J J, Mazo J J, and Zueco D 2014 Phys. Rev. Lett. 112 074101
[66] Born M and Oppenheimer R 1927 Ann. Phys. 389 457
[67]The Supplemental Material provides the detailed comparison of the energies of the ground state and excited states with those obtained by numerically ED and the detailed fittings of the photons population in various cases.
[68] Yu L X, Zhu S Q, Liang Q F, Chen G, and Jia S T 2012 Phys. Rev. A 86 015803
[69] Liu M, Ying Z J, An J H, and Luo H G 2015 New J. Phys. 17 043001
[70] Cong L, Sun X M, Liu M, Ying Z J, and Luo H G 2017 Phys. Rev. A 95 063803
[71] Mao B B, Li L, Wang Y, You W L, Wu W, Liu M, and Luo H G 2019 Phys. Rev. A 99 033834
[72] Sun X M, Cong L, Eckle H P, Ying Z J, and Luo H G 2020 Phys. Rev. A 101 063832
[73] Li Z M, Ferri D, and Batchelor M T 2021 Phys. Rev. A 103 013711
[74] Irish E K 2007 Phys. Rev. Lett. 99 173601
[75] Chen X Y, Zhang Y Y, Fu L, and Zheng H 2020 Phys. Rev. A 101 033827
[76] Li Z M and Batchelor M T 2021 Phys. Rev. A 104 033712
[77] Braak D 2019 Symmetry 11 1259
[78] Le Boité A 2020 Adv. Quantum Technol. 3 1900140
[79] Puebla R, Hwang M J, and Plenio M B 2016 Phys. Rev. A 94 023835
[80] Irish E K and Gea-Banacloche J 2014 Phys. Rev. B 89 085421
[81] Aßmann M, Thewes J, Fröhlich D, and Bayer M 2016 Nat. Mater. 15 741
[82] Berry M V and Tabor M 1977 Proc. R. Soc. London A 356 375
Related articles from Frontiers Journals
[1] M.-L. Cai, Z.-D. Liu, Y. Jiang, Y.-K. Wu, Q.-X. Mei, W.-D. Zhao, L. He, X. Zhang, Z.-C. Zhou, and L.-M. Duan. Probing a Dissipative Phase Transition with a Trapped Ion through Reservoir Engineering[J]. Chin. Phys. Lett., 2022, 39(2): 020502
[2] Wen-Jia Rao. Machine Learning for Many-Body Localization Transition[J]. Chin. Phys. Lett., 2020, 37(8): 020502
[3] Hui Zhou, Zhao-Kai Li, Heng-Yan Wang, Hong-Wei Chen, Xin-Hua Peng, Jiang-Feng Du. Experimental Observation of the Ground-State Geometric Phase of Three-Spin $XY$ Model[J]. Chin. Phys. Lett., 2016, 33(06): 020502
[4] WANG Bo, HUANG Hai-Lin, SUN Zhao-Yu, KOU Su-Peng. Quantum Fidelity and Thermal Phase Transitions in a Two-Dimensional Spin System[J]. Chin. Phys. Lett., 2012, 29(12): 020502
Viewed
Full text


Abstract