Chin. Phys. Lett.  2021, Vol. 38 Issue (8): 087801    DOI: 10.1088/0256-307X/38/8/087801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Improvement of Photoluminescence of Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ by Adding Additional CH$_{3}$NH$_{3}$I during Grinding
Dou-Dou Qian1, Lei Liu1, Zhi-Xue Xing2, Rui Dong1, Li Wu1*, Hong-Kun Cai2*, Yong-Fa Kong1, Yi Zhang2, and Jing-Jun Xu1
1Key Laboratory of Weak-Light Nonlinear Photonics (Ministry of Education), School of Physics, Nankai University, Tianjin 300071, China
2College of Electronic Information and Optical Engineering and Tianjin Key Laboratory of Photo-electronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China
Cite this article:   
Dou-Dou Qian, Lei Liu, Zhi-Xue Xing et al  2021 Chin. Phys. Lett. 38 087801
Download: PDF(1313KB)   PDF(mobile)(1391KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The organic-inorganic hybrid perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ has been a good candidate for many optoelectronic applications such as light-emitting diodes due to its unique properties. Optimizing the optical properties of the CH$_{3}$NH$_{3}$PbI$_{3}$ material to improve the device performance is a hot topic. Herein, a new strategy is proposed to enhance the light emission of CH$_{3}$NH$_{3}$PbI$_{3}$ phosphor effectively. By adding the reactant CH$_{3}$NH$_{3}$I powder in an appropriate proportion and simply grinding, the emission intensity of CH$_{3}$NH$_{3}$PbI$_{3}$ is greatly improved. The advantages of the proposed method are swiftness, simplicity and reproducibility, and no requirement for a complex organic ligand. The mechanism of this phenomenon is revealed by x-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, photoluminescence, and temperature-dependent photoluminescence. This study offers a unique insight for optimizing the optical properties of halide perovskite materials.
Received: 14 April 2021      Published: 02 August 2021
PACS:  78.55.-m (Photoluminescence, properties and materials)  
  78.40.Fy (Semiconductors)  
  81.20.-n (Methods of materials synthesis and materials processing)  
  61.43.Gt (Powders, porous materials)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11774187 and U1902218), the National Key R&D Program of China (Grant No. 2018YFE0203400), the Natural Science Foundation of Tianjin City (Grant No. 19JCYBJC17600), and the 111 Project (Grant No. B07013).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/8/087801       OR      https://cpl.iphy.ac.cn/Y2021/V38/I8/087801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dou-Dou Qian
Lei Liu
Zhi-Xue Xing
Rui Dong
Li Wu
Hong-Kun Cai
Yong-Fa Kong
Yi Zhang
and Jing-Jun Xu
[1] Quan L N, de García A F P, Sabatini R P, and Sargent E H 2018 Adv. Mater. 30 1801996
[2] Stranks S D, Hoye R L Z, Di D, Friend R H, and Deschler F 2019 Adv. Mater. 31 1803336
[3] Xiao Z W and Yan Y F 2017 Adv. Energy Mater. 7 1701136
[4] Zhou J, Luo J, Rong X, Wei P, Molokeev M S, Huang Y, Zhao J, Liu Q, Zhang X, Tang J, and Xia Z 2019 Adv. Opt. Mater. 7 1900139
[5] Zhang Y Y, Chen S, Xu P, Xiang H, Gong X G, Walsh A, and Wei S H 2018 Chin. Phys. Lett. 35 036104
[6] Stranks S D and Snaith H J 2015 Nat. Nanotechnol. 10 391
[7] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, and Friend R H 2014 Nat. Nanotechnol. 9 687
[8] Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, and Wei Z 2018 Nature 562 245
[9] Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, and Huang W 2016 Nat. Photon. 10 699
[10] Huang J, Lai M, Lin J, and Yang P 2018 Adv. Mater. 30 1802856
[11] Zhao Y and Zhu K 2016 Chem. Soc. Rev. 45 655
[12] Qin Z, Dai S, Hadjiev V G, Wang C, Xie L, Ni Y, Wu C, Yang G, Chen S, Deng L, Yu Q, Feng G, Wang Z M, and Bao J 2019 Chem. Mater. 31 9098
[13] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, and Kovalenko M V 2015 Nano Lett. 15 3692
[14] Malgras V, Henzie J, Takei T, and Yamauchi Y 2018 Angew. Chem. Int. Ed. Engl. 57 8881
[15] Malgras V, Henzie J, Takei T, and Yamauchi Y 2017 Chem. Commun. 53 2359
[16] Malgras V, Tominaka S, Ryan J W, Henzie J, Takei T, Ohara K, and Yamauchi Y 2016 J. Am. Chem. Soc. 138 13874
[17] Qin C, Matsushima T, Potscavage W J, Sandanayaka A S D, Leyden M R, Bencheikh F, Goushi K, Mathevet F, Heinrich B, Yumoto G, Kanemitsu Y, and Adachi C 2020 Nat. Photon. 14 70
[18] Song Z, Zhao J, and Liu Q 2019 Inorg. Chem. Front. 6 2969
[19] Anaya M, Rubino A, Rojas T C, Galisteo-López J F, Calvo M E, and Míguez H 2017 Adv. Opt. Mater. 5 1601087
[20] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H, and Stranks S D 2018 Nature 555 497
[21] Yantara N, Bhaumik S, Yan F, Sabba D, Dewi H A, Mathews N, Boix P P, Demir H V, and Mhaisalkar S 2015 J. Phys. Chem. Lett. 6 4360
[22] Yong Z J, Guo S Q, Ma J P, Zhang J Y, Li Z Y, Chen Y M, Zhang B B, Zhou Y, Shu J, Gu J L, Zheng L R, Bakr O M, and Sun H T 2018 J. Am. Chem. Soc. 140 9942
[23] Kong W, Ye Z, Qi Z, Zhang B, Wang M, Rahimi-Iman A, and Wu H 2015 Phys. Chem. Chem. Phys. 17 16405
[24] Shi Z F, Sun X G, Wu D, Xu T T, Zhuang S W, Tian Y T, Li X J, and Du G T 2016 Nanoscale 8 10035
[25] Di D, Musselman K P, Li G, Sadhanala A, Ievskaya Y, Song Q, Tan Z K, Lai M L, MacManus-Driscoll J L, Greenham N C, and Friend R H 2015 J. Phys. Chem. Lett. 6 446
[26] Li G, Tan Z K, Di D, Lai M L, Jiang L, Lim J H, Friend R H, and Greenham N C 2015 Nano Lett. 15 2640
[27] Richter J M, Abdi-Jalebi M, Sadhanala A, Tabachnyk M, Rivett J P H, Pazos-Outon L M, Godel K C, Price M, Deschler F, and Friend R H 2016 Nat. Commun. 7 13941
[28] Lindblad R, Jena N K, Philippe B, Oscarsson J, Bi D, Lindblad A, Mandal S, Pal B, Sarma D D, Karis O, Siegbahn H, Johansson E M J, Odelius M, and Rensmo H 2015 J. Phys. Chem. C 119 1818
[29] Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, and Lee T W 2015 Science 350 1222
[30] Dulkeith E, Ringler M, Klar T A, and Feldmann J 2005 Nano Lett. 5 585
[31] Dar M I, Jacopin G, Meloni S, Mattoni A, Arora N, Boziki A, Zakeeruddin S M, Rothlisberger U, and Gratzel M 2016 Sci. Adv. 2 1601156
[32] Sun X G, Shi Z F, Li Y, Lei L Z, Li S, Wu D, Xu T T, Tian Y T, and Li X J 2017 J. Alloys Compd. 706 274
Viewed
Full text


Abstract