Chin. Phys. Lett.  2021, Vol. 38 Issue (8): 088201    DOI: 10.1088/0256-307X/38/8/088201
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Effect of Fluorine Substitution on the Electrochemical Property and Structural Stability of a Lithium-Excess Cation Disordered Rock-Salt Cathode
Panpan Li , Zhijie Feng , Tao Cheng , Yingchun Lyu*, and Bingkun Guo*
Materials Genome Institute, Shanghai University, Shanghai 200444, China
Cite this article:   
Panpan Li , Zhijie Feng , Tao Cheng  et al  2021 Chin. Phys. Lett. 38 088201
Download: PDF(3125KB)   PDF(mobile)(4318KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Lithium-excess cation disordered rock-salt materials have received much attention because of their high-capacity as a candidate for cathodes for lithium-ion batteries. The ultra-high specific capacity comes from the coordinated charge compensation of both transition metal and lattice oxygen. However, the oxygen redox at high voltage usually leads to irreversible oxygen release, thereby degrading the structure stability and electrochemical performance. Lithium-excess Li$_{1.14}$Ni$_{0.57+0.5 x}$Ti$_{0.19-0.5 x}$Mo$_{0.10}$O$_{2-x}$F$_{x}$ ($x=0$, 0.05, 0.10, 0.15, and 0.20) with different amounts of fluorine substitution were synthesized. Among them, Li$_{1.14}$Ni$_{0.620}$Ti$_{0.140}$Mo$_{0.10}$O$_{1.85}$F$_{0.15}$ exhibits a lower capacity decline, better rate performance, and lower structure damage. The effects of fluorine substitution on the electrochemical property and structural stability were systematic studied by x-ray photoelectron spectroscopy and in situ XRD etc. Results show that fluorine substitution reduces the average valence of the anion, allowing a larger proportion of low-valent redox active transition metals, increasing the transition metal redox capacity, inhibiting irreversible oxygen release and side reaction. Fluorine substitution further improves the structural stability and suppresses lattice deformation of the material.
Received: 29 April 2021      Editors' Suggestion Published: 02 August 2021
PACS:  82.47.Aa (Lithium-ion batteries)  
  82.45.Fk (Electrodes)  
  82.80.Fk (Electrochemical methods)  
Fund: Supported by National Natural Science Foundation of China (Grant Nos. 51602191 and 52072233), and the Beijing National Laboratory for Condensed Matter Physics.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/8/088201       OR      https://cpl.iphy.ac.cn/Y2021/V38/I8/088201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Panpan Li 
Zhijie Feng 
Tao Cheng 
Yingchun Lyu
and Bingkun Guo
[1] Yoshino A 2012 Angew. Chem. Int. Ed. Engl. 51 5798
[2] Gupta A, Mullins C B, and Goodenough J B 2013 J. Power Sources 243 817
[3] Goodenough J B and Park K S 2013 J. Am. Chem. Soc. 135 1167
[4] Sato T et al. 2018 J. Mater. Chem. A 6 13943
[5] Manthiram A 2020 Nat. Commun. 11 1550
[6] Liu Q et al. 2018 Nat. Energy 3 936
[7] Manthiram A et al. 2016 Adv. Energy Mater. 6 1501010
[8] Whittingham M S 2004 Chem. Rev. 104 4271
[9] Masquelier C and Croguennec L 2013 Chem. Rev. 113 6552
[10] Hy S et al. 2016 Energy & Environ. Sci. 9 1931
[11] Lee J et al. 2015 Energy & Environ. Sci. 8 3255
[12] Hamaguchi M et al. 2020 Electrochim. Acta 354 136630
[13] Zou Y et al. 2017 Adv. Sci. 4 1600262
[14] Zhang X et al. 2010 J. Power Sources 195 1292
[15] Lee J et al. 2014 Science 343 519
[16] Clément R J, Lun Z, and Ceder G 2020 Energy & Environ. Sci. 13 345
[17] Urban A, Lee J, and Ceder G 2014 Adv. Energy Mater. 4 1400478
[18] Lun Z et al. 2020 Chem 6 153
[19] Zhao E et al. 2019 Energy Storage Mater. 16 354
[20] Yabuuchi N 2019 Chem. Rec. 19 690
[21] Takeda N et al. 2017 J. Power Sources 367 122
[22] Yabuuchi N et al. 2016 Chem. Mater. 28 416
[23] Yabuuchi N et al. 2015 Proc. Natl. Acad. Sci. USA 112 7650
[24] Yabuuchi N et al. 2016 Nat. Commun. 7 13814
[25] Hoshino S et al. 2017 ACS Energy Lett. 2 733
[26] Nakajima M and Yabuuchi N 2017 Chem. Mater. 29 6927
[27] Twu N et al. 2015 Nano Lett. 15 596
[28] Glazier S L et al. 2015 Chem. Mater. 27 7751
[29] Kitchaev D A et al. 2018 Energy & Environ. Sci. 11 2159
[30] Wang R et al. 2015 Electrochem. Commun. 60 70
[31] Song B et al. 2013 J. Mater. Chem. A 1 9954
[32] Yang M et al. 2012 J. Mater. Chem. 22 6200
[33] Clément R J et al. 2018 Chem. Mater. 30 6945
[34] Lee J et al. 2017 Nat. Commun. 8 981
[35] Crafton M J et al. 2020 Adv. Energy Mater. 10 2001500
[36] Wang Y et al. 2018 J. Phys. Chem. C 122 27836
[37] Ahn J, Chen D, and Chen G 2020 Adv. Energy Mater. 10 2001671
[38] Zhou K et al. 2020 Energy Storage Mater. 32 234
[39] Lee J et al. 2018 Nature 556 185
[40] Xu J et al. 2020 Solid State Ionics 345 115172
[41] Huang Y et al. 2020 Solid State Ionics 351 115341
[42] Shaju K M, Rao G V S, and Chowdari B V R 2002 Electrochim. Acta 48 145
[43] Papp J K et al. 2021 Electrochim. Acta 368 137505
[44] Levi E et al. 1999 Solid State Ionics 126 97
[45] Shannon R D 1976 Acta Cryst. A 32 751
[46] Wang X et al. 2017 J. Power Sources 359 270
[47] Babu D B et al. 2019 J. Power Sources 436 226870
[48] Yu Z et al. 2019 ACS Appl. Mater. & Interfaces 11 35777
[49] Zhang L et al. 2008 J. Power Sources 185 534
[50] Zheng S et al. 2019 J. Alloys Compd. 773 1
[51] Shen C H et al. 2014 ACS Appl. Mater. & Interfaces 6 5516
[52] Qiao Y Q et al. 2011 J. Phys. Chem. C 115 25508
[53] Wang Z et al. 2019 Ceram. Int. 45 20016
[54] Assat G et al. 2016 J. Electrochem. Soc. 163 A2965
[55] Naylor A J et al. 2020 ACS Appl. Energy Mater. 3 5937
[56] Wei X et al. 2013 Electrochim. Acta 107 549
[57] Yang M et al. 2019 ACS Appl. Mater. & Interfaces 11 44144
[58] Xie Q et al. 2019 Chem. Mater. 31 8886
[59] Schulz N et al. 2018 J. Electrochem. Soc. 165 A833
[60] Andersson D P A A M et al. 2002 J. Electrochem. Soc. 149 A1358
[61] Zheng S et al. 2020 ACS Appl. Mater. & Interfaces 12 40347
[62] Li L et al. 2021 Adv. Funct. Mater. 31 2101888
[63] Meng F et al. 2019 Ionics 25 1967
[64] Huang B et al. 2014 J. Power Sources 252 200
Viewed
Full text


Abstract