Chin. Phys. Lett.  2021, Vol. 38 Issue (8): 087101    DOI: 10.1088/0256-307X/38/8/087101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Ce-Site Dilution in the Ferromagnetic Kondo Lattice CeRh$_6$Ge$_4$
Jia-Cheng Xu1, Hang Su1, Rohit Kumar1, Shuai-Shuai Luo1, Zhi-Yong Nie1, An Wang1, Feng Du1, Rui Li1, Michael Smidman1,2, and Hui-Qiu Yuan1,2,3*
1Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou 310058, China
2Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310058, China
3State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310058, China
Cite this article:   
Jia-Cheng Xu, Hang Su, Rohit Kumar et al  2021 Chin. Phys. Lett. 38 087101
Download: PDF(1461KB)   PDF(mobile)(1554KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The heavy fermion ferromagnet CeRh$_6$Ge$_4$ is the first example of a clean stoichiometric system where the ferromagnetic transition can be continuously suppressed by hydrostatic pressure to a quantum critical point. In order to reveal the outcome when the magnetic lattice of CeRh$_6$Ge$_4$ is diluted with non-magnetic atoms, this study reports comprehensive measurements of the physical properties of both single crystal and polycrystalline samples of La$_x$Ce$_{1-x}$Rh$_6$Ge$_4$. With increasing $x$, the Curie temperature decreases, and no transition is observed for $x > 0.25$, while the system evolves from exhibiting coherent Kondo lattice behaviors at low $x$ to the Kondo impurity scenario at large $x$. Moreover, non-Fermi liquid behavior is observed over a wide doping range, which agrees well with the disordered Kondo model for $0.52 \leq x \leq 0.66$, while strange metal behavior is revealed in the vicinity of $x_{\rm c} = 0.26$.
Received: 18 June 2021      Editors' Suggestion Published: 02 August 2021
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 12034017 and 11974306), the National Key R$\&$D Program of China (Grant Nos. 2017YFA0303100 and 2016YFA0300202), and the Key R$\&$D Program of Zhejiang Province, China (Grant No. 2021C01002).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/8/087101       OR      https://cpl.iphy.ac.cn/Y2021/V38/I8/087101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jia-Cheng Xu
Hang Su
Rohit Kumar
Shuai-Shuai Luo
Zhi-Yong Nie
An Wang
Feng Du
Rui Li
Michael Smidman
and Hui-Qiu Yuan
[1] Si Q M and Steglich F 2010 Science 329 1161
[2] Gegenwart P, Si Q M, and Steglich F 2008 Nat. Phys. 4 186
[3] Chen Y, Weng Z F, Smidman M, Lu X, and Yuan H Q 2016 Chin. Phys. B 25 077401
[4] Smidman M, Shen B, Guo C Y, Jiao L, Lu X, and Yuan H Q 2019 Chin. Phys. B 28 017106
[5] Xia X B, Shen B, Smidman M, Chen Y, Lee H, and Yuan H Q 2018 Chin. Phys. Lett. 35 067102
[6] Xie W, Shen B, Zhang Y J, Guo C Y, Xu J C, Lu X, and Yuan H Q 2019 Acta Phys. Sin. 68 177101 (in Chinese)
[7] Thompson J D 2011 Proc. Natl. Acad. Sci. USA 108 18191
[8] Kumar P and Vidhyadhiraja N S 2014 Phys. Rev. B 90 235133
[9] Lawrence J M, Graf T, Hundley M F, Mandrus D, Thompson J D, Lacerda A, Torikachvili M S, Sarrao J L, and Fisk Z 1996 Phys. Rev. B 53 12559
[10] Pikul A P, Stockert U, Steppke A, Cichorek T, Hartmann S, Caroca-Canales N, Oeschler N, Brando M, Geibel C, and Steglich F 2012 Phys. Rev. Lett. 108 066405
[11] Pikul A P, Geibel C, Oeschler N, Macovei M E, Caroca-Canales N, and Steglich F 2010 Phys. Status Solidi (b) 247 691
[12] Pagliuso P G, Moreno N O, Curro N J et al. 2002 Phys. Rev. B 66 054433
[13] Shen B, Zhang Y J, Komijani Y et al. 2020 Nature 579 51
[14] Wang A, Du F, Zhang Y J et al. 2021 Sci. Bull. 66 1389
[15] Wu Y, Zhang Y J, Du F et al. 2021 Phys. Rev. Lett. 126 216406
[16] Shu J W, Adroja D T, Hillier A D et al. 2021 arXiv:2102.12788v1 [cond-mat.str-el]
[17] Voßwinkel D, Niehaus O, Rodewald U C, and Pöttgen R 2012 Z. Naturforsch. B 67 1241
[18] Buschmann R and Schuster H U 1991 Z. Naturforsch. B 46 699
[19] Bauer E 1991 Adv. Phys. 40 417
[20] Cox D L and Grewe N 1988 Z. Phys. B: Condens. Matter 71 321
[21] Ōnuki Y, Shimizu Y, Nishihara M, Machii Y, and Komatsubara T 1985 J. Phys. Soc. Jpn. 54 1964
[22] Lee J, Rabus A, Coutts C, and Mun E 2019 Phys. Rev. B 99 045135
[23] Nozieres P 1974 J. Low Temp. Phys. 17 31
[24] Oliveira L N and Wilkins J W 1981 Phys. Rev. Lett. 47 1553
[25] Miranda E, Dobrosavljevic V, and Kotliar G 1996 J. Phys.: Condens. Matter 8 9871
[26] De Andrade M C, Chau R, Dickey R P et al. 1998 Phys. Rev. Lett. 81 5620
Viewed
Full text


Abstract