Chin. Phys. Lett.  2021, Vol. 38 Issue (8): 087102    DOI: 10.1088/0256-307X/38/8/087102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Coexistence of Charge Order and Antiferromagnetic Order in an Extended Periodic Anderson Model
Yanting Li , Bixia Gao , Qiyu Wang , Juan Zhang , and Qiaoni Chen*
Department of Physics, Beijing Normal University, Beijing 100875, China
Cite this article:   
Yanting Li , Bixia Gao , Qiyu Wang  et al  2021 Chin. Phys. Lett. 38 087102
Download: PDF(564KB)   PDF(mobile)(646KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The competition between the RKKY interaction and the Kondo effect leads to a magnetic phase transition, which occurs ubiquitously in heavy fermion materials. However, there are more and more experimental evidences indicating that the valence fluctuation plays an essential role in the Ce- and Y-based compounds. We study an extended periodic Anderson model (EPAM) which includes the onsite Coulomb repulsion $U_{cf}$ between the localized electrons and conduction electrons. By employing the density matrix embedding theory, we investigate the EPAM in the symmetric case at half filling. By fixing the onsite Coulomb repulsion $U$ of the localized electrons to an intermediate value, the interplay between the RKKY interaction, the Kondo effect and the Coulomb repulsion $U_{cf}$ brings rich physics. We find three different phases, the antiferromagnetic phase, the charge order phase and paramagnetic phase. When the hybridization strength $V$ between the localized orbital and the conduction orbital is small, the Kondo effect is weak so that the AF phase and the CO phase are present. The phase transition between the two long-range ordered phase is of first order. We also find a coexistence region between the two phases. As $V$ increases, the Kondo effect becomes stronger, and the paramagnetic phase appears between the other two phases.
Received: 02 June 2021      Published: 02 August 2021
PACS:  71.10.-w (Theories and models of many-electron systems)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  71.10.Hf (Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems)  
  75.20.Hr (Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11974048 and 11974049), and the Beijing Science Foundation (Grant No. 1192011).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/8/087102       OR      https://cpl.iphy.ac.cn/Y2021/V38/I8/087102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yanting Li 
Bixia Gao 
Qiyu Wang 
Juan Zhang 
and Qiaoni Chen
[1] Lawrence J M, Riseborough P S, and Parks R D 1981 Rep. Prog. Phys. 44 1
[2] Watanabe S, Tsuruta A, Miyake K, and Flouquet J 2009 J. Phys. Soc. Jpn. 78 104706
[3] Miyake K and Watanabe S 2017 Philos. Mag. 97 3495
[4] Nakatsuji S, Kuga K, Machida Y, Tayama T, Sakakibara T, Karaki Y, Ishimoto H, Yonezawa S, Maeno Y, Pearson E, Lonzarich G G, Balicas L, Lee H, and Fisk Z 2008 Nat. Phys. 4 603
[5] Okawa M, Matsunami M, Ishizaka K, Eguchi R, Taguchi M, Chainani A, Takata Y, Yabashi M, Tamasaku K, Nishino Y, Ishikawa T, Kuga K, Horie N, Nakatsuji S, and Shin S 2010 Phys. Rev. Lett. 104 247201
[6] Watanabe S and Miyake K 2010 Phys. Rev. Lett. 105 186403
[7] Utsumi Y, Sato H, Kurihara H, Maso H, Hiraoka K, Kojima K, Tobimatsu K, Ohkoch T, Fujimori S I, Takeda Y, Saitoh Y, Mimura K, Ueda S, Yamashita Y, Yoshikawa H, Kobayashi K, Oguchi T, Shimada K, Namatame H, and Taniguchi M 2011 Phys. Rev. B 84 115143
[8] Gegenwart P, Custers J, Tokiwa Y, Geibel C, and Steglich F 2005 Phys. Rev. Lett. 94 076402
[9] Wada S, Yamamoto A, Ishida K, and Sarrao J L 2008 J. Phys.: Condens. Matter 20 175201
[10] Lashley J C, Lawson A C, Cooley J C, Mihaila B, Opeil C P, Pham L, Hults W L, Smith J L, Schmiedeshoff G M, Drymiotis F R, Chapline G, Basu S, and Riseborough P S 2006 Phys. Rev. Lett. 97 235701
[11] Yuan H Q 2003 Science 302 2104
[12] Yamaoka H, Ikeda Y, Jarrige I, Tsujii N, Zekko Y, Yamamoto Y, Mizuki J, Lin J F, Hiraoka N, Ishii H, Tsuei K D, Kobayashi T C, Honda F, and Onuki Y 2014 Phys. Rev. Lett. 113 086403
[13] Phan V N 2020 Phys. Rev. B 101 245120
[14] Chatterjee S, Ruf J P, Wei H I, Finkelstein K D, Schlom D G, and Shen K M 2017 Nat. Commun. 8 852
[15] Danzenbacher S, Vyalikh D V, Kucherenko Y, Kade A, Laubschat C, Caroca-Canales N, Krellner C, Geibel C, Fedorov A V, Dessau D S, Follath R, Eberhardt W, and Molodtsov S L 2009 Phys. Rev. Lett. 102 026403
[16] Dubi Y B A V 2011 Phys. Rev. Lett. 106 086401
[17] Watanabe S, Imada M, and Miyake K 2006 J. Phys. Soc. Jpn. 75 043710
[18] Saiga Y, Sugibayashi T, and Hirashima D S 2008 J. Phys. Soc. Jpn. 77 114710
[19] Onishi Y and Miyake K 2000 J. Phys. Soc. Jpn. 69 3955
[20] Yoshida T, Ohashi T, and Kawakami N 2011 J. Phys. Soc. Jpn. 80 064710
[21] Yoshida T and Kawakami N 2012 Phys. Rev. B 85 235148
[22] Takemura S, Takemori N, and Koga A 2015 Phys. Rev. B 91 165114
[23] Hagymasi I, Itai K, and Solyom J 2013 Phys. Rev. B 87 125146
[24] Hagymasi I, Solyom J, and Legeza O 2014 Phys. Rev. B 90 125137
[25] Phan V N, Mai A, and Becker K W 2010 Phys. Rev. B 82 045101
[26] Knizia G and Chan G K L 2012 Phys. Rev. Lett. 109 186404
[27] Yang J W, Wang Q Y, Ma T X, and Chen Q N 2019 Phys. Rev. B 99 245136
[28] Yang J W and Chen Q N 2018 Chin. Phys. B 27 37101
[29] Sharma S and Chan G K L 2012 J. Chem. Phys. 136 124121
[30] Chen Q N, Booth G H, Sharma S, Knizia G, and Chan G K L 2014 Phys. Rev. B 89 165134
[31] Tang Q C and Zhu W 2020 Chin. Phys. Lett. 37 010301
Viewed
Full text


Abstract