Chin. Phys. Lett.  2021, Vol. 38 Issue (7): 077101    DOI: 10.1088/0256-307X/38/7/077101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$
Z. Z. Zhou1, H. J. Liu2, G. Y. Wang3, R. Wang1*, and X. Y. Zhou1*
1Center for Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing 401331, China
2Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China
3Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China
Cite this article:   
Z. Z. Zhou, H. J. Liu, G. Y. Wang et al  2021 Chin. Phys. Lett. 38 077101
Download: PDF(2608KB)   PDF(mobile)(4361KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on first-principles calculations and symmetry arguments, we reveal that the non-centrosymmetric ternary tetradymite BiSbTe$_{3}$ possesses exotic dual topological features of Weyl semimetallic phases with $Z_{2}$ index (1:000). The results show that the helical Dirac-type surface states protected by the time-reversal symmetry are present in the vicinity of the Brillouin zone center, which is consistent with the experimental report. Furthermore, we show that four pairs of Weyl points reside exactly at the Fermi level, which are guaranteed to be located on high-symmetry planes due to mirror symmetries. The helical surface states and the projected Weyl nodes are well separated in the momentum space, facilitating their observations in experiments. This work not only uncovers a unique quantum phenomenon with dual topological features in the tetradymite family but also paves a fascinating avenue for exploring the coexistence of multi-topological states with wide applications.
Received: 11 March 2021      Published: 05 July 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.22.+i (Electronic structure of liquid metals and semiconductors and their Alloys)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11604032, 11674040, and 51672270), and the Fundamental Research Funds for the Central Universities (Grant No. 106112016CDJZR308808).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/7/077101       OR      https://cpl.iphy.ac.cn/Y2021/V38/I7/077101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Z. Z. Zhou
H. J. Liu
G. Y. Wang
R. Wang
and X. Y. Zhou
[1] Chen H et al. 2011 Phys. Rev. Lett. 107 056804
[2] Brüne C et al. 2012 Nat. Phys. 8 485
[3] Pei C Y et al. 2020 Chin. Phys. Lett. 37 066401
[4] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[5] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[6] Wan X G et al. 2011 Phys. Rev. B 83 205101
[7] Weng H M et al. 2015 Phys. Rev. X 5 011029
[8] Soluyanov A A et al. 2015 Nature 527 495
[9] Xia B W et al. 2019 Phys. Rev. Lett. 122 057205
[10] Nielsen H B and Ninomiya M 1983 Phys. Rev. Lett. 130 389
[11] Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412
[12] Xiong J et al. 2015 Science 350 413
[13] Jiang Q D et al. 2015 Phys. Rev. Lett. 115 156602
[14] Kurebayashi D and Nomura K 2016 Phys. Rev. Appl. 6 044013
[15] Zhang H et al. 2009 Nat. Phys. 5 438
[16] Chen Y L et al. 2009 Science 325 178
[17] Zhang J S et al. 2011 Nat. Commun. 2 574
[18] Shi H L et al. 2015 Phys. Rev. Appl. 3 014004
[19] Yang F et al. 2016 Phys. Rev. B 94 075304
[20] Ghaemi P, Mong R S K, and Moore J E 2010 Phys. Rev. Lett. 105 166603
[21] Xu Y, Gan Z, and Zhang S C 2014 Phys. Rev. Lett. 112 226801
[22] Liang J H et al. 2016 Nanoscale 8 8855
[23] Kong D et al. 2011 Nat. Nanotechnol. 6 705
[24] Hao G L et al. 2013 J. Appl. Phys. 113 024306
[25] Zhou Z Z et al. 2018 J. Phys. D 51 315501
[26] Cao G H et al. 2020 Phys. Rev. Mater. 4 034204
[27] Cheng L et al. 2014 Phys. Rev. B 90 085118
[28] Blöchl P E 1994 Phys. Rev. B 50 17953
[29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[30] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[31] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[32] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[33] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[34] Klimeš J, Bowler D R, and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201
[35] Mostofi A A et al. 2008 Comput. Phys. Commun. 178 685
[36] Sancho M P L, Sancho J M L, and Rubio J 1984 J. Phys. F 14 1205
[37] Wu Q S et al. 2018 Comput. Phys. Commun. 224 405
[38] Rajput I and Lakhani A 2019 AIP Conf. Proc. 2162 020044
[39] Kulbachinskii V A et al. 2012 AIP Conf. Proc. 1449 119
[40] Singh S et al. 2016 Phys. Rev. B 94 161116
[41] Acosta C M, Fazzio A, and Dalpian G M 2019 npj Quantum Mater. 4 41
[42] Wang R et al. 2018 Phys. Rev. B 97 195157
[43] Ruan J W et al. 2016 Nat. Commun. 7 11136
[44] Bera A et al. 2013 Phys. Rev. Lett. 110 107401
[45] Cao G H et al. 2018 Phys. Rev. B 97 075147
Viewed
Full text


Abstract