Chin. Phys. Lett.  2021, Vol. 38 Issue (7): 076501    DOI: 10.1088/0256-307X/38/7/076501
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Thermal Stability of High Power 26650-Type Cylindrical Na-Ion Batteries
Quan Zhou1,2, Yuqi Li1,2, Fei Tang3, Kaixuan Li3, Xiaohui Rong1,2, Yaxiang Lu1,2*, Liquan Chen1,2, and Yong-Sheng Hu1,2,3*
1Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3HiNa Battery Technology Co., Ltd, Beijing 100194, China
Cite this article:   
Quan Zhou, Yuqi Li, Fei Tang et al  2021 Chin. Phys. Lett. 38 076501
Download: PDF(1888KB)   PDF(mobile)(1987KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As a new electrochemical power system, safety (especially thermal safety) of Na-ion batteries (NIBs) is the key towards large-scale industrialization and market application. Thus, research on the thermal stability of NIBs is helpful to evaluate the safety properties and to provide effective strategies to prevent the occurrence of battery safety failure. Thermal stability of the high-power 26650 cylindrical NIBs using Cu-based layered oxide cathode and hard carbon anode is studied. The high power NIBs can achieve fast charge and discharge at 5–10 C rate and maintain 80% capacity after 4729 cycles at 2 C/2 C rate, where the unit C denotes a measure of the rate at which a battery is charge-discharged relative to its maximum capacity. The results of accelerating rate calorimeter and differential scanning calorimetry (ARC-DSC) test results show that NIBs have a higher initial decomposition temperature ($\ge$110 ℃) and a lower maximum thermal runaway temperature ($\le $350 ℃) than those of Li-ion batteries (LIBs), exhibiting a favorable thermal stability. It should be noted that the heat generation of cathode accounts for a large proportion of the total heat generation while the thermal stability of the anode determines the initial thermal runaway temperature, which is similar to LIBs. Finally, the whole temperature characteristics of the NIBs in the range of $-60 $ ℃–1000 ℃ are summarized, which provide guidance for the safety design and applications of NIBs.
Received: 20 April 2021      Published: 05 July 2021
PACS:  65.40.-b (Thermal properties of crystalline solids)  
  65.20.-w (Thermal properties of liquids)  
  65.40.gk (Electrochemical properties)  
  88.80.ff (Batteries)  
Fund: Supported by the National Key Technology R&D Program of China (Grant No. 2016YFB0901500), the National Natural Science Foundation of China (Grant No. 51725206), NSFCUKRI_EPSRC (Grant No. 51861165201), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA21070500), and Beijing Natural Science Fund-Haidian Original Innovation Joint Fund (Grant No. L182056).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/7/076501       OR      https://cpl.iphy.ac.cn/Y2021/V38/I7/076501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Quan Zhou
Yuqi Li
Fei Tang
Kaixuan Li
Xiaohui Rong
Yaxiang Lu
Liquan Chen
and Yong-Sheng Hu
[1] Pan H, Hu Y S, and Chen L 2013 Energy & Environ. Sci. 6 2338
[2] Meng Q, Lu Y, Ding F, Zhang Q, Chen L, and Hu Y S 2019 ACS Energy Lett. 4 2608
[3] Jiang L, Lu Y, Wang Y, Liu L, Qi X, Zhao C, Chen L, and Hu Y S 2018 Chin. Phys. Lett. 35 048801
[4] Zhang B, Camélia M, Christel L, Cathie V G, and Tarascon J M 2016 Adv. Energy Mater. 6 1501588
[5] Lei Y, Yan Z, Lai W, Chou S, Wang Y, Liu H, and Dou S 2020 Electrochem. Energy Rev. 3 766
[6] Li Y, Lu Y, Adelhelm P, Titirici M M, and Hu Y S 2019 Chem. Soc. Rev. 48 4655
[7] Abraham K M 2020 ACS Energy Lett. 5 3544
[8] Chen Z, Xiong R, Lu J, and Li X 2018 Appl. Energy 213 375
[9] DP F, Scheel M, JB R, Tjaden B, Hunt I, and TJ M 2015 Nat. Commun. 6 6924
[10] Feng X, Fang M, He X, Ouyang M, Lu L, Wang H, and Zhang M 2014 J. Power Sources 255 294
[11] MacNeil D D, Larcher D D, and Dahn J R 2019 J. Electrochem. Soc. 146 3596
[12] Lei B, Zhao W, Ziebert C, Uhlmann N, Rohde M, and Seifert H 2017 Batteries 3 14
[13] Zheng S, Wang L, Feng X, and He X 2018 J. Power Sources 378 527
[14] Feng X, Zheng S, He X, Wang L, Wang Y, and Ren D 2018 Front. Energy Res. 6 126
[15] Ren D, Liu X, Feng X, Lu L, Ouyang M, and Li J 2018 Appl. Energy 228 633
[16] Roth E P and Doughty D H 2004 J. Power Sources 128 308
[17] Li Y, Yang Y, Lu Y, Zhou Q, Qi X, Meng Q, Rong X, Chen L, and Hu Y S 2020 ACS Energy Lett. 5 1156
[18] Feng X, Zhen S, Ren D, He X, Wang L, Cui H, Liu X, Jin C, Zhang F, Xu C, Hsu H, Gao S, Chen T, Li Y, Wang T, Wang H, Li M, and Ouyang M 2019 Appl. Energy 246 53
[19] Andersson A M, Edstrom K, Rao N, and Wendsjö Å 1999 J. Power Sources 81–82 286
[20] Andersson A M, Edstrom K, and Thomas J O 1999 J. Power Sources 81–82 8
[21] Lee H, W, and Wang Y 2004 J. Electrochem. Soc. 151 A542
[22] Sacken U, Nodwell E, Sundher A, and Dahn J 1995 J. Power Sources 54 240
[23] Yang H, Bang H, Amine K, and Prakash J 2005 J. Electrochem. Soc. 152 A73
[24] Liu L, Qi X, Yin S, Zhang Q, Liu X, Suo L, Li H, Chen L, and Hu Y S 2019 ACS Energy Lett. 4 1650
[25] Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, and Granot E 1997 J. Power Sources 68 91
[26] Doughty D and Roth E P 2012 Electrochem. Soc. Interface 21 37
[27] Richard M and Dahn J R 1999 J. Electrochem. Soc. 146 2068
[28] Maleki H, Deng G, Anani A, and Howard J 1999 J. Electrochem. Soc. 146 3224
[29] Yamaki J, Baba Y, Katayama N, Takatsuji H, Egashira M, and Okada S 2003 J. Power Sources 119–121 789
[30] Qiao R, Zhang M, Liu Y, Ren W, Lin Y, and Pan F 2016 Chin. Phys. Lett. 33 078201
[31] Dahn J R, Fuller E W, Obrovac M, and Vonsacken U 1994 Solid State Ionics 69 265
[32] Arai H, Tsuda M, Saito K, Hayashi M, and Sakurai Y 2002 J. Electrochem. Soc. 149 A401
[33] Baba Y, Okada S, and Yamaki J 2002 Solid State Ionics 148 311
[34] Ouyang C, Shi S, Wang Z, Li H, Huang X, and Chen L 2005 Chin. Phys. Lett. 22 489
[35] Li Y, Lu Y, Meng Q, Jensen A, Zhang Q, Zhang Q, Tong Y, Qi Y, Gu L, Titirici M M, and Hu Y S 2019 Adv. Energy Mater. 9 1902852
[36] Liu K, Liu Y, Lin D, Pei A, and Cui Y 2018 Sci. Adv. 4 eaas9820
[37] Larsson F and Mellander B E 2014 J. Electrochem. Soc. 161 A1611
[38] Xie Y, Xu G, Che H, Wang H, Yang K, Yang X G F, Yang R, Che Z, and Khalil A 2018 Chem. Mater. 30 4909
[39] Chen R, Nolan A M, Lu J, Chen L, Huang X, and Li H 2020 Joule 4 812
[40] Liu X, Ren D, Hsu H, Feng X, GL X, Zhuang M G H, Lu L, Han X, Chu Z, Li J, He X, Amine K, and Ouyang M 2018 Joule 2 2047
[41] Zhang L, Ma Y, Cheng X, Cui Y, Guan T, Gao Y, Du C, Yin G, Lin F, and Nordlund D 2016 J. Power Sources 329 255
[42] Eshetu G G, Grugeon S, Kim H, Jeong S, Wu L, Gachot G, Laruelle S, Armand M, and Passerini S 2016 ChemSusChem 9 462
[43] Ponrouch A, Marchante E, Courty M, Tarascon J M, and Palacín M R 2012 Energy & Environ. Sci. 5 8572
[44] Li Y, Lu Y, Chen L, and Hu Y S 2020 Chin. Phys. B 29 048201
[45] Zhu X B and Wang L Z 2020 EcoMat 2 e12043
[46] Lee Y, Lim H, Kim S O, Kim H S, Kim K J, Lee K Y, and Choi W 2018 J. Mater. Chem. A 6 20383
[47] Feng J, An Y, Ci L, and Xiong S 2015 J. Mater. Chem. A 3 14539
[48] Hu Y S, Komaba S, Forsyth M, Johnson C, and Rojo T 2019 Small Methods 3 1900184
Viewed
Full text


Abstract