Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 044207    DOI: 10.1088/0256-307X/37/4/044207
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Mode Control of Quasi-PT Symmetry in Laterally Multi-Mode Double Ridge Semiconductor Laser
Ting Fu1,3, Yu-Fei Wang1,2, Xue-You Wang1,3, Xu-Yan Zhou1, Wan-Hua Zheng1,2,3,4**
1Laboratory of Solid State Optoelectronics Information technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2College of Future Technology, University of Chinese Academy of Sciences, Beijing 101408
3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049
4State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
Ting Fu, Yu-Fei Wang, Xue-You Wang et al  2020 Chin. Phys. Lett. 37 044207
Download: PDF(1045KB)   PDF(mobile)(1037KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In traditional semiconductor lasers, it is usual to obtain single lateral mode operation by narrowing the ridge of waveguide, which is sensitive to fabrication inaccuracies. To overcome this shortcoming, a quasi-PT (parity-time) symmetric double ridge semiconductor laser is proposed to reach single lateral mode operation for an intrinsic multi-mode stripe laser. The coupled mode theory is used to analyze the non-Hermitian modulation of the gain (or loss) of the PT symmetric double ridge laser to obtain the coupling coefficient between the two ridge waveguides. Finally, the mode field distributions of the quasi-PT symmetric double ridge laser are simulated before and after the spontaneous PT symmetry breaking, which keep the laser operating in single lateral mode.
Received: 30 December 2019      Published: 24 March 2020
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  11.30.Er (Charge conjugation, parity, time reversal, and other discrete symmetries)  
Fund: Supported by the National Key R&D Program of China (Grant Nos. 2016YFB0401804 and 2016YFA0301102), and the National Natural Science Foundation of China (Grant Nos. 91850206, 61535013, and 11981260014).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/4/044207       OR      https://cpl.iphy.ac.cn/Y2020/V37/I4/044207
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ting Fu
Yu-Fei Wang
Xue-You Wang
Xu-Yan Zhou
Wan-Hua Zheng
[1]Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[2]Bender C M, Berry M V and Mandilara A 2002 J. Phys. A 35 L467
[3]Bender C M 2007 Rep. Prog. Phys. 70 947
[4]Makris K G, El-Ganainy R, Christodoulides D N et al 2008 Phys. Rev. Lett. 100 103904
[5]Rüter C E, Makris K G, El-Ganainy R et al 2010 Nat. Phys. 6 192
[6]El-Ganainy R, Makris K G, Christodoulides D N et al 2007 Opt. Lett. 32 2632
[7]Gao Z, Thompson B J, Dave H et al 2019 Appl. Phys. Lett. 114 061103
[8]Hodaei H, Hassan A U, Wittek S et al 2017 Nature 548 187
[9]Hodaei H, Miri M A, Hassan A U et al 2015 Opt. Lett. 40 4955
[10]Brandstetter M, Liertzer M, Deutsch C et al 2014 Nat. Commun. 5 4034
[11]Peng R, Li Y and Huang W 2019 Appl. Opt. 58 2761
[12]Peng R, Li Y and Huang W 2018 J. Lightwave Technol. 36 4074
[13]Liu W, Li M, Guzzon R S et al 2017 Nat. Commun. 8 15389
[14]Gao Z, Fryslie S T M, Thompson B J et al 2017 Optica 4 323
[15]Hodaei H, Miri M A, Hassan A U et al 2016 Laser & Photon. Rev. 10 494
[16]Gu Z, Zhang N, Lyu Q et al 2016 Laser & Photon. Rev. 10 588
[17]Song Q, Li J, Sun W et al 2015 Opt. Express 23 24257
[18]Hodaei H, Miri M A, Heinrich M et al 2014 Science 346 975
[19]Feng L, Wong Z J, Ma R M et al 2014 Science 346 972
[20]Gu J, Xi X, Ma J et al 2016 Sci. Rep. 6 37688
[21]Kulishov M, Laniel J M, Bélanger N et al 2005 Opt. Express 13 3068
[22]Lin Z, Ramezani H, Eichelkraut T et al 2011 Phys. Rev. Lett. 106 213901
[23]Zhu Y, Zhao Y, Fan J et al 2016 IEEE J. Sel. Top. Quantum Electron. 22 5
[24]Song W, Sun W, Chen C et al 2019 Phys. Rev. Lett. 123 165701
[25]Gao Z, Johnson M T and Choquette K D 2018 J. Appl. Phys. 123 173102
[26]Phang S, Vukovic A, Creagh S C et al 2016 Sci. Rep. 6 20499
[27]Coldren L A, Corzine S W and Mašanović M L 2012 Diode Lasers and Photonic Integrated Circuits(Hoboken: John Wiley & Sons)
[28]Miri M A, LiKamWa P and Christodoulides D N 2012 Opt. Lett. 37 764
[29]Klaiman S, Günther U and Moiseyev N 2008 Phys. Rev. Lett. 101 080402
[30]Hassan A U, Hodaei H, Miri M A et al 2015 Phys. Rev. A 92 063807
Related articles from Frontiers Journals
[1] Yu Ma, Wei-Jiang Li Yun-Fei, Xu, Jun-Qi Liu, Ning Zhuo, Ke Yang, Jin-Chuan Zhang, Shen-Qiang Zhai, Shu-Man Liu, Li-Jun Wang, and Feng-Qi Liu. Flat Top Optical Frequency Combs Based on a Single-Core Quantum Cascade Laser at Wavelength of $\sim$ 8.7 μm[J]. Chin. Phys. Lett., 2023, 40(1): 044207
[2] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser *[J]. Chin. Phys. Lett., 0, (): 044207
[3] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser[J]. Chin. Phys. Lett., 2020, 37(6): 044207
[4] Yi-Chen Xu, Zhi-Min Wang, Feng-Feng Zhang, Rui-Nan Yang, Xu-Chao Liu, Yue Song, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. High-Efficiency Spectral-Beam-Combined 930nm Diode Laser Source[J]. Chin. Phys. Lett., 2020, 37(5): 044207
[5] Rui Guo, Ye-Wen Jiang, Ting-Hao Liu, Qiang Liu, Ma-Li Gong. Pulse Characteristics of Cavityless Solid-State Laser[J]. Chin. Phys. Lett., 2020, 37(4): 044207
[6] Yan-Ping Li, Li-Jun Yuan, Li Tao, Wei-Xi Chen, Bao-Jun Wang, Jiao-Qing Pan. III–V/Si Hybrid Laser Array with DBR on Si Waveguide[J]. Chin. Phys. Lett., 2019, 36(10): 044207
[7] Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma, Ai-Yi Qi, Xu-Yan Zhou, Yu-Fei Wang, Wan-Hua Zheng. High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle[J]. Chin. Phys. Lett., 2019, 36(8): 044207
[8] Ya-Jie Li, Jia-Qi Wang, Lu Guo, Guang-Can Chen, Zhao-Song Li, Hong-Yan Yu, Xu-Liang Zhou, Huo-Lei Wang, Wei-Xi Chen, Jiao-Qing Pan. Electrically and Optically Bistable Operation in an Integration of a 1310nm DFB Laser and a Tunneling Diode[J]. Chin. Phys. Lett., 2018, 35(4): 044207
[9] Meng Xun, Yun Sun, Chen Xu, Yi-Yang Xie, Zhi Jin, Jing-Tao Zhou, Xin-Yu Liu, De-Xin Wu. Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2018, 35(3): 044207
[10] Qiang Gao, Wu-Bin Weng, Bo Li, Zhong-Shan Li. Quantitative and Spatially Resolved Measurement of Atomic Potassium in Combustion Using Diode Laser[J]. Chin. Phys. Lett., 2018, 35(2): 044207
[11] Xiao-Wang Fan, Jian-Ping Liu, Feng Zhang, Masao Ikeda, De-Yao Li, Shu-Ming Zhang, Li-Qun Zhang, Ai-Qin Tian, Peng-Yan Wen, Guo-Hong Ma, Hui Yang. Effect of Droop Phenomenon in InGaN/GaN Blue Laser Diodes on Threshold Current[J]. Chin. Phys. Lett., 2017, 34(9): 044207
[12] Shu-Shan Huang, Yu Zhang, Yong-Ping Liao, Cheng-Ao Yang, Xiao-Li Chai, Ying-Qiang Xu, Hai-Qiao Ni, Zhi-Chuan Niu. High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence[J]. Chin. Phys. Lett., 2017, 34(8): 044207
[13] Si-Hang Wei, Xiang-Jun Shang, Ben Ma, Ze-Sheng Chen, Yong-Ping Liao, Hai-Qiao Ni, Zhi-Chuan Niu. Intracavity Spontaneous Parametric Down-Conversion in Bragg Reflection Waveguide Edge Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(7): 044207
[14] Yang Chen, Yu-Fei Wang, Hong-Wei Qu, Yu-Fang Zhang, Yun Liu, Xiao-Long Ma, Xiao-Jie Guo, Peng-Chao Zhao, Wan-Hua Zheng. High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(7): 044207
[15] Sheng-Nan Zhang, Xiao-Gang Zhang, Jian-Hui Tu, Zhao-Jie Jiang, Hao-Sen Shang, Chuan-Wen Zhu, Wei Yang, Jing-Zhong Cui, Jing-Biao Chen. A 420nm Blue Diode Laser for the Potential Rubidium Optical Frequency Standard[J]. Chin. Phys. Lett., 2017, 34(7): 044207
Viewed
Full text


Abstract