FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Landau–Zener–Stückelberg Interference in Nonlinear Regime |
Tong Wu1,2,3†, Yuxuan Zhou2,3†, Yuan Xu2,3, Song Liu2,3,4, Jian Li2,3,4** |
1Department of Physics, Harbin Institute of Technology, Harbin 150001 2Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055 3Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055 4Center for Quantum Computing, Peng Cheng Laboratory, Shenzhen 518055
|
|
Cite this article: |
Tong Wu, Yuxuan Zhou, Yuan Xu et al 2019 Chin. Phys. Lett. 36 124204 |
|
|
Abstract Landau–Zener–Stückelberg (LZS) interference has drawn renewed attention to quantum information processing research because it is not only an effective tool for characterizing two-level quantum systems but also a powerful approach to manipulate quantum states. Superconducting quantum circuits, due to their versatile tunability and degrees of control, are ideal platforms for studying LZS interference phenomena. We use a superconducting Xmon qubit to study LZS interference by parametrically modulating the qubit transition frequency nonlinearly. For dc flux biasing of the qubit slightly far away from the optimal flux point, the qubit excited state population shows an interference pattern that is very similar to the standard LZS interference in linear regime, except that all bands shift towards lower frequencies when increasing the rf modulation amplitude. For dc flux biasing close to the optimal flux point, the negative sidebands and the positive sidebands behave differently, resulting in an asymmetric interference pattern. The experimental results are also in good agreement with our analytical and numerical simulations.
|
|
Received: 27 September 2019
Published: 25 November 2019
|
|
PACS: |
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
85.25.Cp
|
(Josephson devices)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 11874065, the Key R&D Program of Guangdong Province under Grant No 2018B030326001, the Guangdong Innovative and Entrepreneurial Research Team Program under Grant No 2016ZT06D348, the Natural Science Foundation of Guangdong Province under Grant No 2017B030308003, the Natural Science Foundation of Hunan Province under Grant No 2018JJ1031, and the Science, Technology and Innovation Commission of Shenzhen Municipality under Grant Nos ZDSYS20170303165926217, JCYJ20170412152620376 and KYTDPT20181011104202253. |
|
|
[1] | Wendin G 2017 Rep. Prog. Phys. 80 106001 | [2] | Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319 | [3] | Barends B, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Clel, A N and Martinis J M 2013 Phys. Rev. Lett. 111 080502 | [4] | Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O'Malley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Clel, A N and Martinis J M 2014 Nature 508 500 | [5] | Martinis J M and Geller M R 2014 Phys. Rev. A 90 022307 | [6] | McKay D C, Wood C J, Sheldon S, Chow J M and Gambetta J M 2017 Phys. Rev. A 96 022330 | [7] | Li J, Silveri M P, Kumar K S, Pirkkalainen J M, Vepsäläinen A, Chien W C, Tuorila J, Sillanpää M A, Hakonen P J, Thuneberg E V and Paraoanu G S 2013 Nat. Commun. 4 1420 | [8] | Silveri M P, Kumar K S, Tuorila J, Li J, Vepsäläinen A, Thuneberg E V and Paraoanu G S 2015 New J. Phys. 17 043058 | [9] | Beaudoin F, da Silva M P, Dutton Z and Blais A 2012 Phys. Rev. A 86 022305 | [10] | Str, J D, Ware M, Beaudoin F, Ohki T A, Johnson B R, Blais A and Plourde B L T 2013 Phys. Rev. B 87 220505(R) | [11] | Reagor M, Osborn C B, Tezak N and et al 2018 Sci. Adv. 4 eaao3603 | [12] | Caldwell S, Didier N, Ryan C A and et al 2018 Phys. Rev. Appl. 10 034050 | [13] | Wu Y, Yang L P, Gong M, Zheng Y, Deng H, Yan Z, Zhao Y, Huang K, Castellano A D, Munro W J, Nemoto K, Zheng D N, Sun C P, Liu Y X, Zhu X and Lu L 2018 npj Quantum Inf. 4 50 | [14] | Zhou L, Yang S, Liu Y X, Sun C P and Nori F 2009 Phys. Rev. A 80 062109 | [15] | Liu Y X, Yang C X, Sun H C and Wang X B 2014 New J. Phys. 16 015031 | [16] | Wang D W , Song C, Feng W, Cai H, Xu D, Deng H, Li H, Zheng D, Zhu X, Wang H, Zhu S Y and Scully M O 2019 Nat. Phys. 15 382 | [17] | Garraway B M and Vitanov N V 1997 Phys. Rev. A 55 4418 | [18] | Shevchenko S N, Ashhab S and Nori F 2010 Phys. Rep. 492 1 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|