FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Preparation and 1.06μm Fluorescence Decay of Nd$^{3+}$-Doped Glass Ceramics Containing NaYF$_{4}$ Nanocrystallites |
Xing-Yong Huang1,2, Da-Qin Chen3, Bi-Zhou Shen4, Hai-Zhi Song1,5** |
1Southwest Institute of Technical Physics, Chengdu 610041 2School of Physics and Electronic Engineering, Yibin University, Yibin 644007 3College of Physics and Energy, and Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou 350117 4ENREACH Education (ChengDu) of Dipont Education Management Group, Chengdu 617000 5Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054
|
|
Cite this article: |
Xing-Yong Huang, Da-Qin Chen, Bi-Zhou Shen et al 2019 Chin. Phys. Lett. 36 084203 |
|
|
Abstract Considered to be a candidate for large-size bulk materials used in lasers and other fields, Nd$^{3+}$-doped glass ceramics containing NaYF$_{4}$ nanocrystallites are prepared. Using x-ray diffraction and transmission electron microscopy, we show that pure cubic NaYF$_{4}$ is well precipitated in the glass matrix. To obtain the optical property of this material at 1.06 μm, the fluorescence decay of $^{4}\!F_{3/2}$ energy levels is measured and analyzed. It is found that the fluorescence lifetime decreases first and then increases with the increasing dopant concentration due to the existing but finally weakening energy dissipation. As a result, a long radiation lifetime of about 191–444 μs is obtained at 1.06 μm in the prepared material. It is thus revealed that Nd$^{3+}$-doped glass ceramic containing NaYF$_{4}$ nanocrystallites is a potential candidate as a near-infrared laser material.
|
|
Received: 24 May 2019
Published: 22 July 2019
|
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2017YFB0405302, the Scientific Research Fund of Sichuan Provincial Education Department under Grant No 15ZB0294, the Key Technical Project of Yibin City in 2015, the Scientific Research Project of Yibin University under Grant No 2015PY02, the 1000 Talents Plan of Sichuan Province, and the Rongpiao Plan of Chengdu City. |
|
|
[1] | Rajagukguk J, Sinaga B, Sihombing E, Djamal M and Kaewkhao J 2018 Mater. Today: Proc. 5 14998 | [2] | Wang Y, Cao J, Li X, Li J, Tan L, Xu S and Peng M 2019 J. Am. Ceram. Soc. 102 1694 | [3] | Li B Z et al 2005 Chin. Phys. Lett. 22 80 | [4] | Dong X, You F, Peng H and Huang S 2016 J. Rare Earths 34 863 | [5] | Chen D, Wang Y, Yu Y, Ma E and Liu F 2007 J. Phys. Chem. Solids 68 193 | [6] | Wang Y, Zhang Y, Cao J, Wang L, Peng X, Zhong J, Yang C, Xu S, Yang Z and Peng M 2019 Opt. Lett. 44 2153 | [7] | Zhou Z, Zhou Y, Zhou M, Su X and Cheng P 2017 J. Non-Cryst. Solids 470 122 | [8] | Dan H K, Zhou D, Yang Z, Song Z, Yu X and Qiu J 2015 J. Non-Cryst. Solids 414 21 | [9] | Kassab L R P, Silva D M, Garcia J A M, da Silva D S and de Araújo C B 2016 Opt. Mater. 60 25 | [10] | Kesavulu C R, Kim H J, Lee S W, Kaewkhao J, Wantana N, Kaewnuam E, Kothan S and Kaewjaeng S 2017 J. Alloys Compd. 695 590 | [11] | Zhang L, Yang B and Hu L 2014 J. Quant. Spectrosc. Radiat. Transfer 147 47 | [12] | Zhao M, Zhang H, Zou X, Jia W and Su C 2019 Mater. Lett. 243 73 | [13] | Deng Y and Niu C 2019 J. Lumin. 209 39 | [14] | Zhao J, Huang L, Zhao S and Xu S 2019 J. Am. Ceram. Soc. 102 1720 | [15] | Fu Y, Zhao L, Guo Y, Wu B, Dong H and Yu H 2019 J. Lumin. 208 33 | [16] | Liu S, Kong Y, Tao H and Sang Y 2017 J. Eur. Ceram. Soc. 37 715 | [17] | Liu F, Chen D, Wang Y, Ma E and Yu Y 2007 J. Alloys Compd. 443 143 | [18] | Huang X, Xiong Y, Hu Y and Xiao Y 2016 Optik 127 8847 | [19] | Xue T, Zhang L, Hu J, Liao M and Hu L 2015 Opt. Mater. 47 24 | [20] | Wang M, Tian B, Yue D, Lu W, Yu M, Li C, Li Q and Wang Z 2015 J. Rare Earths 33 355 | [21] | Lü Q, Wu Y, Ding L, Zu G, Li A, Zhao Y and Cui H 2010 J. Alloys Compd. 496 488 | [22] | Stagi L, Chiriu D, Ardu A, Cannas C, Carbonaro C M and Ricci P C 2015 J. Appl. Phys. 118 125502 | [23] | Ramachari D, Rama M L and Jayasankar C K 2014 Infrared Phys. Technol. 67 555 | [24] | Bednarkiewicz A, Wawrzynczyk D, Nyk M and Strek W 2011 Opt. Mater. 33 1481 | [25] | Chen Z, Tian C, Bo S, Liu X and Zhen Z 2015 Opt. Mater. 48 86 | [26] | Rajesh D and de Camargo A S S 2019 J. Lumin. 207 469 | [27] | Hu Z, Wang Y, Bao F and Luo W 2005 J. Non-Cryst. Solids 351 722 | [28] | Yi Y, Fan X, Zhang X, Zhu X, Yuan J, Yu H, Wang G and Shan X 2016 J. Alloys Compd. 683 506 | [29] | Madhu A, Eraiah B, Manasa P and Srinatha N 2018 Opt. Mater. 75 357 | [30] | Pan Y, Zhou S, Wang J, Xu B, Liu J, Song Q, Xu J, Li D, Liu P, Xu X and Xu J 2018 Appl. Opt. 57 9657 | [31] | Megala R, Gowthami T, John Sushma N, Kamala S and Deva Prasad Raju B 2018 Infrared Phys. Technol. 90 221 | [32] | Lalla E A, Rodríguez-Mendoza U R, Lozano-Gorrín A D, Sanz-Arranz A, Rull F and Lavín V 2016 Opt. Mater. 51 35 | [33] | Balda R, Fernández J, Arriandiaga M A and Fernández-Navarro J M 2007 J. Phys.: Condens. Matter 19 086223 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|