Chin. Phys. Lett.  2019, Vol. 36 Issue (8): 084203    DOI: 10.1088/0256-307X/36/8/084203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Preparation and 1.06μm Fluorescence Decay of Nd$^{3+}$-Doped Glass Ceramics Containing NaYF$_{4}$ Nanocrystallites
Xing-Yong Huang1,2, Da-Qin Chen3, Bi-Zhou Shen4, Hai-Zhi Song1,5**
1Southwest Institute of Technical Physics, Chengdu 610041
2School of Physics and Electronic Engineering, Yibin University, Yibin 644007
3College of Physics and Energy, and Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou 350117
4ENREACH Education (ChengDu) of Dipont Education Management Group, Chengdu 617000
5Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054
Cite this article:   
Xing-Yong Huang, Da-Qin Chen, Bi-Zhou Shen et al  2019 Chin. Phys. Lett. 36 084203
Download: PDF(742KB)   PDF(mobile)(727KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Considered to be a candidate for large-size bulk materials used in lasers and other fields, Nd$^{3+}$-doped glass ceramics containing NaYF$_{4}$ nanocrystallites are prepared. Using x-ray diffraction and transmission electron microscopy, we show that pure cubic NaYF$_{4}$ is well precipitated in the glass matrix. To obtain the optical property of this material at 1.06 μm, the fluorescence decay of $^{4}\!F_{3/2}$ energy levels is measured and analyzed. It is found that the fluorescence lifetime decreases first and then increases with the increasing dopant concentration due to the existing but finally weakening energy dissipation. As a result, a long radiation lifetime of about 191–444 μs is obtained at 1.06 μm in the prepared material. It is thus revealed that Nd$^{3+}$-doped glass ceramic containing NaYF$_{4}$ nanocrystallites is a potential candidate as a near-infrared laser material.
Received: 24 May 2019      Published: 22 July 2019
PACS:  42.70.-a (Optical materials)  
  78.55.-m (Photoluminescence, properties and materials)  
  78.45.+h (Stimulated emission)  
  78.30.-j (Infrared and Raman spectra)  
  61.82.Rx (Nanocrystalline materials)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2017YFB0405302, the Scientific Research Fund of Sichuan Provincial Education Department under Grant No 15ZB0294, the Key Technical Project of Yibin City in 2015, the Scientific Research Project of Yibin University under Grant No 2015PY02, the 1000 Talents Plan of Sichuan Province, and the Rongpiao Plan of Chengdu City.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/8/084203       OR      https://cpl.iphy.ac.cn/Y2019/V36/I8/084203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xing-Yong Huang
Da-Qin Chen
Bi-Zhou Shen
Hai-Zhi Song
[1]Rajagukguk J, Sinaga B, Sihombing E, Djamal M and Kaewkhao J 2018 Mater. Today: Proc. 5 14998
[2]Wang Y, Cao J, Li X, Li J, Tan L, Xu S and Peng M 2019 J. Am. Ceram. Soc. 102 1694
[3]Li B Z et al 2005 Chin. Phys. Lett. 22 80
[4]Dong X, You F, Peng H and Huang S 2016 J. Rare Earths 34 863
[5]Chen D, Wang Y, Yu Y, Ma E and Liu F 2007 J. Phys. Chem. Solids 68 193
[6]Wang Y, Zhang Y, Cao J, Wang L, Peng X, Zhong J, Yang C, Xu S, Yang Z and Peng M 2019 Opt. Lett. 44 2153
[7]Zhou Z, Zhou Y, Zhou M, Su X and Cheng P 2017 J. Non-Cryst. Solids 470 122
[8]Dan H K, Zhou D, Yang Z, Song Z, Yu X and Qiu J 2015 J. Non-Cryst. Solids 414 21
[9]Kassab L R P, Silva D M, Garcia J A M, da Silva D S and de Araújo C B 2016 Opt. Mater. 60 25
[10]Kesavulu C R, Kim H J, Lee S W, Kaewkhao J, Wantana N, Kaewnuam E, Kothan S and Kaewjaeng S 2017 J. Alloys Compd. 695 590
[11]Zhang L, Yang B and Hu L 2014 J. Quant. Spectrosc. Radiat. Transfer 147 47
[12]Zhao M, Zhang H, Zou X, Jia W and Su C 2019 Mater. Lett. 243 73
[13]Deng Y and Niu C 2019 J. Lumin. 209 39
[14]Zhao J, Huang L, Zhao S and Xu S 2019 J. Am. Ceram. Soc. 102 1720
[15]Fu Y, Zhao L, Guo Y, Wu B, Dong H and Yu H 2019 J. Lumin. 208 33
[16]Liu S, Kong Y, Tao H and Sang Y 2017 J. Eur. Ceram. Soc. 37 715
[17]Liu F, Chen D, Wang Y, Ma E and Yu Y 2007 J. Alloys Compd. 443 143
[18]Huang X, Xiong Y, Hu Y and Xiao Y 2016 Optik 127 8847
[19]Xue T, Zhang L, Hu J, Liao M and Hu L 2015 Opt. Mater. 47 24
[20]Wang M, Tian B, Yue D, Lu W, Yu M, Li C, Li Q and Wang Z 2015 J. Rare Earths 33 355
[21]Lü Q, Wu Y, Ding L, Zu G, Li A, Zhao Y and Cui H 2010 J. Alloys Compd. 496 488
[22]Stagi L, Chiriu D, Ardu A, Cannas C, Carbonaro C M and Ricci P C 2015 J. Appl. Phys. 118 125502
[23]Ramachari D, Rama M L and Jayasankar C K 2014 Infrared Phys. Technol. 67 555
[24]Bednarkiewicz A, Wawrzynczyk D, Nyk M and Strek W 2011 Opt. Mater. 33 1481
[25]Chen Z, Tian C, Bo S, Liu X and Zhen Z 2015 Opt. Mater. 48 86
[26]Rajesh D and de Camargo A S S 2019 J. Lumin. 207 469
[27]Hu Z, Wang Y, Bao F and Luo W 2005 J. Non-Cryst. Solids 351 722
[28]Yi Y, Fan X, Zhang X, Zhu X, Yuan J, Yu H, Wang G and Shan X 2016 J. Alloys Compd. 683 506
[29]Madhu A, Eraiah B, Manasa P and Srinatha N 2018 Opt. Mater. 75 357
[30]Pan Y, Zhou S, Wang J, Xu B, Liu J, Song Q, Xu J, Li D, Liu P, Xu X and Xu J 2018 Appl. Opt. 57 9657
[31]Megala R, Gowthami T, John Sushma N, Kamala S and Deva Prasad Raju B 2018 Infrared Phys. Technol. 90 221
[32]Lalla E A, Rodríguez-Mendoza U R, Lozano-Gorrín A D, Sanz-Arranz A, Rull F and Lavín V 2016 Opt. Mater. 51 35
[33]Balda R, Fernández J, Arriandiaga M A and Fernández-Navarro J M 2007 J. Phys.: Condens. Matter 19 086223
Related articles from Frontiers Journals
[1] Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen, Yue-Jia Xiao, Han Ye, and Wen-Jun Liu. Tunable Dual-Wavelength Fiber Laser in a Novel High Entropy van der Waals Material[J]. Chin. Phys. Lett., 2023, 40(2): 084203
[2] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 084203
[3] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 084203
[4] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 084203
[5] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 084203
[6] Zong-Peng Song, Hai-Ou Zhu, Wen-Tao Shi, Da-Lin Sun, Shuang-Chen Ruan. Ultrafast charge transfer in dual graphene-WS$_{2}$ van der Waals quadrilayer heterostructures[J]. Chin. Phys. Lett., 2018, 35(12): 084203
[7] Lu Li, Rui-Dong Lv, Si-Cong Liu, Zhen-Dong Chen, Jiang Wang, Yong-Gang Wang, Wei Ren. Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(11): 084203
[8] Sohail Abdul Jalil, Mahreen Akram, Gwanho Yoon, Ayesha Khalid, Dasol Lee, Niloufar Raeis-Hosseini, Sunae So, Inki Kim, Qazi Salman Ahmed, Junsuk Rho, Muhammad Qasim Mehmood. High Refractive Index Ti$_3$O$_5$ Films for Dielectric Metasurfaces[J]. Chin. Phys. Lett., 2017, 34(8): 084203
[9] A. R. Muhammad, M. T. Ahmad, R. Zakaria, H. R. A. Rahim, S. F. A. Z. Yusoff, K. S. Hamdan, H. H. M. Yusof, H. Arof, S. W. Harun.. Q-Switching Pulse Operation in 1.5-μm Region Using Copper Nanoparticles as Saturable Absorber[J]. Chin. Phys. Lett., 2017, 34(3): 084203
[10] N. A. A. Kadir, E. I. Ismail, A. A. Latiff, H. Ahmad, H. Arof, S. W. Harun. Transition Metal Dichalcogenides (WS$_{2}$ and MoS$_{2}$) Saturable Absorbers for Mode-Locked Erbium-Doped Fiber Lasers[J]. Chin. Phys. Lett., 2017, 34(1): 084203
[11] M. F. M. Rusdi, A. A. Latiff, E. Hanafi, M. B. H. Mahyuddin, H. Shamsudin, K. Dimyati, S. W. Harun. Molybdenum Disulphide Tape Saturable Absorber for Mode-Locked Double-Clad Ytterbium-Doped All-Fiber Laser Generation[J]. Chin. Phys. Lett., 2016, 33(11): 084203
[12] Yang-Yang Dun, Ping Li, Xiao-Han Chen, Bao-Min Ma. High-Power Passively Q-Switched Nd:YAG Laser at 1112nm with a Cr$^{4+}$:YAG Saturable Absorber[J]. Chin. Phys. Lett., 2016, 33(02): 084203
[13] XU Ling, TAN Yi-Dong, ZHANG Shu-Lian, SUN Li-Qun. Measurement of Refractive Index Ranging from 1.42847 to 2.48272 at 1064 nm Using a Quasi-Common-Path Laser Feedback System[J]. Chin. Phys. Lett., 2015, 32(09): 084203
[14] YANG Qi, XU Shan-Hui, LI Can, YANG Chang-Sheng, FENG Zhou-Ming, XIAO Yu, HUANG Xiang, YANG Zhong-Min. A Single-Frequency Linearly Polarized Fiber Laser Using a Newly Developed Heavily Tm3+-Doped Germanate Glass Fiber at 1.95 μm[J]. Chin. Phys. Lett., 2015, 32(09): 084203
[15] ZENG Yong-Ping, LIU Wen-Jie, WENG Guo-En, ZHAO Wan-Ru, ZUO Hai-Jie, YU Jian, ZHANG Jiang-Yong, YING Lei-Ying, ZHANG Bao-Ping. Effect of In Diffusion on the Property of Blue Light-Emitting Diodes[J]. Chin. Phys. Lett., 2015, 32(06): 084203
Viewed
Full text


Abstract