Dark Sharma–Tasso–Olver Equations and Their Recursion Operators
Yu Wang1 , Biao Li1** , Hong-Li An2
1 Department of Mathematics, and Ningbo Collaborative Innovation Center of Nonlinear Harzard System of Ocean and Atmosphere, Ningbo University, Ningbo 3152112 College of Sciences, Nanjing Agricultural University, Nanjing 210095
Abstract :A complete scalar classification for dark Sharma–Tasso–Olver's (STO's) equations is derived by requiring the existence of higher order differential polynomial symmetries. There are some free parameters for every class of dark STO systems, thus some special equations including symmetry equation and dual symmetry equation are obtained by selecting a free parameter. Furthermore, the recursion operators of STO equation and dark STO systems are constructed by a direct assumption method.
收稿日期: 2017-10-16
出版日期: 2017-12-17
:
02.30.Ik
(Integrable systems)
02.30.Jr
(Partial differential equations)
02.70.Wz
(Symbolic computation (computer algebra))
[1] Kupershmidt B A 2001 J. Nonlinear Math. Phys. 8 363 [2] Qiao Z J 2001 Rev. Math. Phys. 13 545 [3] Magri F 1978 J. Math. Phys. 19 1156 [4] Xiong N, Lou S Y, Li B and Chen Y 2017 Commun. Theor. Phys. 68 13 [5] Liu X J, Liu R L and Zeng Y B 2008 Phys. Lett. A 372 3819 [6] Liu Q P, Hu X B and Zhang M X 2005 Nonlinearity 18 1597 [7] Olver P J 1977 J. Math. Phys. 18 1212 [8] Gudkov V V 1997 J. Math. Phys. 38 4794 [9] Wang S, Tang X Y and Lou S Y 2004 Chaos Solitons Fractals 21 231 [10] Hon Y C and Fan E 2005 Chaos Solitons Fractals 24 1087 [11] Inan I E K D 2007 Physica A 381 104 [12] Huang W L and Cai J L 2011 Chin. Phys. Lett. 28 110203 [13] Yao B W and Lou S Y 2012 Chin. Ann. Math. Ser. B 33 271 [14] Olver P J 1986 Applications of Lie Groups to Differential Equations (Berlin: Springer) [15] Hu X Z and Chen Y 2015 Chin. Phys. B 24 090203 [16] Yao R X and Lou S Y 2008 Chin. Phys. Lett. 25 1927 [17] Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202 [18] Ren B, Yang J R, Zeng B Q and Liu P 2015 Chin. Phys. B 24 010202 [19] Li Y Q, Chen J Q, Chen Y and Lou S Y 2014 Chin. Phys. Lett. 31 010201 [20] Fordy A P and Gibbons J 1980 J. Math. Phys. 21 2508 [21] Fokas A S and Anderson R L 1982 J. Math. Phys. 23 1066 [22] Fokas A S 1987 Stud. Appl. Math. 77 253 [23] Santini P M and Fokas A S 1988 Commun. Math. Phys. 115 375 [24] Fokas A S and Santini P M 1988 Commun. Math. Phys. 116 449 [25] Qiao Z J 2006 J. Math. Phys. 47 112701 [26] Qiao Z J 2007 J. Math. Phys. 48 082701 [27] Qiao Z J 2003 Commun. Math. Phys. 239 309 [28] Cao C W 1989 Sci. Chin. A 7 701 [29] Cao C W 1989 Chin. Sci. Bull. 34 1331 [30] Symes W 1979 J. Math. Phys. 20 721 [31] Adler M 1978 Invent. Math. 50 219 [32] Fu W and Zhang D J 2013 Chin. Phys. Lett. 30 080201 [33] Cai L Q, Wang L F, Wu K and Yang J 2013 Chin. Phys. Lett. 30 020306 [34] Gurses M, Karasu A and Sokolov V V 1999 J. Math. Phys. 40 6473 [35] Fokas A S and Fuchssteiner B 1981 Nonlinear Anal.: Theory Methods Appl. 5 423 [36] Fuchssteiner B 1979 Nonlinear Anal.: Theory Methods Appl. 3 849
[1]
. [J]. 中国物理快报, 2023, 40(2): 20201-.
[2]
. [J]. 中国物理快报, 2022, 39(10): 100201-.
[3]
. [J]. 中国物理快报, 2022, 39(9): 94201-094201.
[4]
. [J]. 中国物理快报, 2021, 38(9): 90201-.
[5]
. [J]. 中国物理快报, 2021, 38(8): 80201-.
[6]
. [J]. 中国物理快报, 2021, 38(8): 80202-.
[7]
. [J]. 中国物理快报, 2021, 38(6): 60501-.
[8]
. [J]. 中国物理快报, 2020, 37(10): 100501-.
[9]
. [J]. 中国物理快报, 2020, 37(5): 50502-.
[10]
. [J]. 中国物理快报, 2020, 37(4): 40201-.
[11]
. [J]. 中国物理快报, 2020, 37(4): 40501-.
[12]
. [J]. 中国物理快报, 2020, 37(3): 30501-.
[13]
. [J]. 中国物理快报, 2019, 36(12): 120501-.
[14]
. [J]. 中国物理快报, 2019, 36(11): 110201-.
[15]
. [J]. 中国物理快报, 2019, 36(3): 30201-.