Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System
Zequn Qi , Zhao Zhang , and Biao Li*
School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China
Abstract :On the basis of $N$-soliton solutions, space-curved resonant line solitons are derived via a new constraint proposed here, for a generalized $(2+1)$-dimensional fifth-order KdV system. The dynamic properties of these new resonant line solitons are studied in detail. We then discuss the interaction between a resonance line soliton and a lump wave in greater detail. Our results highlight the distinctions between the generalized $(2+1)$-dimensional fifth-order KdV system and the classical type.
收稿日期: 2021-01-27
出版日期: 2021-05-25
:
05.45.Yv
(Solitons)
02.30.Ik
(Integrable systems)
47.20.Ky
(Nonlinearity, bifurcation, and symmetry breaking)
52.35.Mw
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
[1] Hirota R 1971 Phys. Rev. Lett. 27 1192
[2] Ma W X 2020 Opt. Quantum Electron. 52 1
[3] Zhang Z, Yang X Y, and Li B 2020 Nonlinear Dyn. 100 1551
[4] Yuan F, Cheng Y, and He J S 2020 Commun. Nonlinear Sci. Numer. Simul. 83 105027
[5] Zhang Z, Yang S X, and Li B 2019 Chin. Phys. Lett. 36 120501
[6] Wang B, Zhang Z, and Li B 2020 Chin. Phys. Lett. 37 030501
[7] Wu Y H, Liu C, Yang Z Y, and Yang W L 2020 Chin. Phys. Lett. 37 040501
[8] Liu J G 2018 Appl. Math. Lett. 86 36
[9] Lü J Q, Bilige S, and Chaolu T 2018 Nonlinear Dyn. 91 1669
[10] Wang C J, Fang H, and Tang X X 2019 Nonlinear Dyn. 95 2943
[11] Yan Z W and Lou S Y 2020 Commun. Nonlinear Sci. Numer. Simul. 91 105425
[12] Wazwaz A M 2006 Appl. Math. Lett. 19 1162
[13] Chen A H 2010 Phys. Lett. A 374 2340
[14] Wang Y F, Tian B, and Jiang Y 2017 Appl. Math. Comput. 292 448
[15] Chen A H and Wang F F 2019 Phys. Scr. 94 055206
[16] Dai C Q and Yu D G 2008 Int. J. Theor. Phys. 47 741
[17] Zhang Z, Qi Z Q, and Li B 2021 Appl. Math. Lett. 116 107004
[18] Ma W X 2015 Phys. Lett. A 379 1975
[19] Ma W X and Zhou Y 2018 J. Differ. Eq. 264 2633
[20] Zhang Z, Yang X Y, Li W T, and Li B 2019 Chin. Phys. B 28 110201
[1]
. [J]. 中国物理快报, 2023, 40(7): 70501-.
[2]
. [J]. 中国物理快报, 2023, 40(4): 40501-.
[3]
. [J]. 中国物理快报, 2023, 40(2): 20201-.
[4]
. [J]. 中国物理快报, 2022, 39(11): 114202-.
[5]
. [J]. 中国物理快报, 2022, 39(10): 100201-.
[6]
. [J]. 中国物理快报, 2022, 39(9): 94201-094201.
[7]
. [J]. 中国物理快报, 2022, 39(4): 44202-.
[8]
. [J]. 中国物理快报, 2022, 39(3): 34202-.
[9]
. [J]. 中国物理快报, 2022, 39(2): 20501-.
[10]
. [J]. 中国物理快报, 2022, 39(1): 10501-.
[11]
. [J]. 中国物理快报, 2021, 38(9): 90201-.
[12]
. [J]. 中国物理快报, 2021, 38(9): 90501-.
[13]
. [J]. 中国物理快报, 2021, 38(9): 94201-.
[14]
. [J]. 中国物理快报, 2021, 38(8): 80201-.
[15]
. [J]. 中国物理快报, 2020, 37(10): 100501-.