Higher Dimensional Camassa–Holm Equations
S. Y. Lou1 , Man Jia1* , and Xia-Zhi Hao2*
1 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China2 Faculty of Science, Zhejiang University of Technology, Hangzhou 310014, China
Abstract :Utilizing some conservation laws of the (1+1)-dimensional Camassa–Holm (CH) equation and/or its reciprocal forms, some (n+1)-dimensional CH equations for $n\geq 1$ are constructed by a modified deformation algorithm. The Lax integrability can be proven by applying the same deformation algorithm to the Lax pair of the (1+1)-dimensional CH equation. A novel type of peakon solution is implicitly given and expressed by the LambertW function.
收稿日期: 2023-01-01
Editors' Suggestion
出版日期: 2023-02-06
:
02.30.Ik
(Integrable systems)
05.45.Yv
(Solitons)
47.20.Ky
(Nonlinearity, bifurcation, and symmetry breaking)
52.35.Mw
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
52.35.Sb\\
[1] Lou S Y and Ni G J 1989 Phys. Lett. A 140 33
[2] Hu H C, Lou S Y, and Chow K W 2007 Chaos Solitons & Fractals 31 1213
[3] Lou S Y 1997 J. Phys. A 30 7259
[4] Lou S Y, Hao X Z, and Jia M 2022 arXiv:2211.06844 [nlin.SI]
[5] Ablowitz M J and Musslimani Z H 2013 Phys. Rev. Lett. 110 064105
[6] Lou S Y 2018 J. Math. Phys. 59 083507
[7] Camassa R and Holm D D 1993 Phys. Rev. Lett. 71 1661
[8] Fuchssteiner B and Fokas A 1981 Physica D 4 47
[9] Constantin A and Strauss W 2000 Phys. Lett. A 270 140
[10] Dai H H 1998 Acta Mech. 127 193
[11] Hunter J K and Saxton R 1991 SIAM J. Appl. Math. 51 1498
[12] Bressan A and Constantin A 2005 SIAM J. Math. Anal. 37 996
[13] Loewner C 1952 J. Anal. Math. 2 219
[14] Konopelchenko B and Rogers C 1991 Phys. Lett. A 158 391
[15] Lou S Y, Rogers C, and Schief W K 2003 J. Math. Phys. 44 5869
[16] Oevel W and Schief W K 1994 Rev. Math. Phys. 6 1301
[17] Lou S Y 2003 J. Phys. A 36 3877
[18] Konopelchenko B G and Rogers C 1993 J. Math. Phys. 34 214
[19] Schief W K 1994 Proc. R. Soc. A|Proc. R. Soc. London Ser. A 446 381
[20] Lou S Y and Qiao Z J 2017 Chin. Phys. Lett. 34 100201
[21] Zhang D J and Chen D Y 2002 Chaos Solitons & Fractals 14 573
[22] Wang D S, Li Q, Wen X Y, and Liu L 2020 Rep. Math. Phys. 86 325
[23] Lü X and Ma W X 2016 Nonlinear Dyn. 85 1217
[24] Wang D S, Guo B L, and Wang X L 2019 J. Differ. Equ. 266 5209
[1]
. [J]. 中国物理快报, 2022, 39(10): 100201-.
[2]
. [J]. 中国物理快报, 2022, 39(9): 94201-094201.
[3]
. [J]. 中国物理快报, 2021, 38(9): 90201-.
[4]
. [J]. 中国物理快报, 2021, 38(8): 80201-.
[5]
. [J]. 中国物理快报, 2021, 38(8): 80202-.
[6]
. [J]. 中国物理快报, 2021, 38(6): 60501-.
[7]
. [J]. 中国物理快报, 2020, 37(10): 100501-.
[8]
. [J]. 中国物理快报, 2020, 37(5): 50502-.
[9]
. [J]. 中国物理快报, 2020, 37(4): 40201-.
[10]
. [J]. 中国物理快报, 2020, 37(4): 40501-.
[11]
. [J]. 中国物理快报, 2020, 37(3): 30501-.
[12]
. [J]. 中国物理快报, 2019, 36(12): 120501-.
[13]
. [J]. 中国物理快报, 2019, 36(11): 110201-.
[14]
. [J]. 中国物理快报, 2019, 36(3): 30201-.
[15]
. [J]. 中国物理快报, 2018, 35(11): 110201-.