Exact Solution of a Non-Hermitian Generalized Rabi Model
Yusong Cao1,2 and Junpeng Cao1,2,3,4*
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China3 Songshan Lake Materials Laboratory, Dongguan 523808, China4 Peng Huanwu Center for Fundamental Theory, Xian 710127, China
Abstract :An integrable non-Hermitian generalized Rabi model is constructed. A twist matrix is introduced to the construction of Hamiltonian and generates the non-Hermitian properties. The Yang–Baxter integrability of the system is proven. The exact energy spectrum and eigenstates are obtained using the Bethe ansatz. The method given in this study provides a general way to construct integrable spin-boson models.
收稿日期: 2021-05-02
Editors' Suggestion
出版日期: 2021-08-02
:
.75.10.Pq
02.30.Ik
(Integrable systems)
71.10.Pm
(Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))
[1] Rabi I I 1937 Phys. Rev. 51 652
[2] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hümmer T, Solano E, Marx A, and Gross R 2010 Nat. Phys. 6 772
[3] Khitrova G, Gibbs H M, Kira M, Koch S W, and Scherer A 2006 Nat. Phys. 2 81
[4] Leibfried D, Blatt R, Monroe C, and Wineland D 2003 Rev. Mod. Phys. 75 281
[5] Dicke R H 1954 Phys. Rev. 93 99
[6] Flottat T, Hebert F, Rousseau V G, and Batrouni G G 2016 Eur. Phys. J. D 70 213
[7] Schiro M, Bordyuh M, Oztop B, and Tureci H E 2013 J. Phys. B 46 224021
[8] Lambert N, Emary C, and Brandes T 2004 Phys. Rev. Lett. 92 073602
[9] Cui S, Cao J, Fan H, and Amico L 2017 J. Phys. A 50 204001
[10] Lv X, Zhao C, and Zheng H 2017 J. Phys. A 50 074002
[11] Xie Q 2020 Commun. Theor. Phys. 72 065105
[12] Zhang Y, Mao B, Xu D, Zhang Y, You W, Liu M, and Luo H 2020 J. Phys. A 53 315302
[13] Braak D 2011 Phys. Rev. Lett. 107 100401
[14] Judd B R 1979 J. Phys. C 12 1685
[15] Xie Q, Cui S, Cao J, Amico L, and Fan H 2014 Phys. Rev. X 4 021046
[16] Skrypnyk T 2018 J. Phys. A 51 015204
[17] Bogoliubov N M, Bulloughz R K, and Timonen J 1996 J. Phys. A 29 6305
[18] Bogoliubov N M 2000 J. Res. Natl. Bur. Stand. Sec. B 100 2051
[19] Rybin A, Kastelewiczz G, Timoneny J, and Bogoliubov N 1998 J. Phys. A 31 4705
[20] Amico L and Hikami K 2005 Eur. Phys. J. B 43 387
[21] Kundu A 2007 SIGMA 3 040
[22] Kundu A 2007 Theor. Math. Phys. 151 831
[23] Amico L, Frahmb H, Osterlohb A, and Ribeiro G A P 2007 Nucl. Phys. B 787 283
[24] Dunning C, Isaac P S, Links J, and Zhao S 2011 Nucl. Phys. B 848 372
[25] Babelon O and Talalaev D 2007 J. Stat. Mech.: Theory Exp. 2007 P06013
[26] Skrypnyk T 2008 J. Phys. A 41 475202
[27] Skrypnyk T 2010 J. Phys. A 43 205205
[28] Tschirhart H and Faribault A 2014 J. Phys. A 47 405204
[29] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[30] Rotter I 2009 J. Phys. A 42 153001
[31] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, and Christodoulides D N 2018 Nat. Phys. 14 11
[32] Heiss W 2012 J. Phys. A 45 444016
[33] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[34] Okuma N, Kawabata K, Shiozaki K, and Sato M 2020 Phys. Rev. Lett. 124 086801
[35] Zhang K, Yang Z, and Fang C 2020 Phys. Rev. Lett. 125 126402
[36] Longhi S 2019 Phys. Rev. Lett. 122 237601
[37] Longhi S 2021 Phys. Rev. B 103 054203
[38] Tzortzakakis A F, Makris K G, Szameit A, and Economou E N 2021 Phys. Rev. Res. 3 013208