Lax Pairs of Integrable Systems in Bidifferential Graded Algebras
Danda Zhang1 , Da-Jun Zhang2 , Sen-Yue Lou3**
1 School of Mathematics and Statistics, Ningbo University, Ningbo 3152112 Department of Mathematics, Shanghai University, Shanghai 2004443 School of Physical Science and Technology, Ningbo University, Ningbo 315211
Abstract :Lax pairs regarded as foundations of the inverse scattering methods play an important role in integrable systems. In the framework of bidifferential graded algebras, we propose a straightforward approach to constructing the Lax pairs of integrable systems in functional environment. Some continuous equations and discrete equations are presented.
收稿日期: 2019-12-11
出版日期: 2020-03-24
:
02.30.Ik
(Integrable systems)
02.30.Jr
(Partial differential equations)
47.20.Ky
(Nonlinearity, bifurcation, and symmetry breaking)
[1]
. [J]. 中国物理快报, 2023, 40(2): 20201-.
[2]
. [J]. 中国物理快报, 2022, 39(10): 100201-.
[3]
. [J]. 中国物理快报, 2022, 39(9): 94201-094201.
[4]
. [J]. 中国物理快报, 2021, 38(9): 90201-.
[5]
. [J]. 中国物理快报, 2021, 38(8): 80201-.
[6]
. [J]. 中国物理快报, 2021, 38(8): 80202-.
[7]
. [J]. 中国物理快报, 2021, 38(6): 60501-.
[8]
. [J]. 中国物理快报, 2020, 37(10): 100501-.
[9]
. [J]. 中国物理快报, 2020, 37(5): 50502-.
[10]
. [J]. 中国物理快报, 2020, 37(4): 40501-.
[11]
. [J]. 中国物理快报, 2020, 37(3): 30501-.
[12]
. [J]. 中国物理快报, 2019, 36(12): 120501-.
[13]
. [J]. 中国物理快报, 2019, 36(11): 110201-.
[14]
. [J]. 中国物理快报, 2019, 36(3): 30201-.
[15]
. [J]. 中国物理快报, 2018, 35(11): 110201-.