Enhancement of Heat-Resistance of Carbonyl Iron Particles by Coating with Silica and Consequent Changes in Electromagnetic Properties
Zhao-Wen Ren1 , Hui Xie2** , Ying-Ying Zhou2,3
1 School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 7100212 School of Materials Engineering, Xi'an Aeronautical University, Xi'an 7100773 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Abstract :Silica-coated carbonyl iron particles (CIPs) are fabricated with the Stober method to improve their heat-resistance and wave-absorption properties. The morphology, heat-resistance, electromagnetic properties and microwave absorption of raw-CIPs and silica-coated CIPs are investigated using a scanning electron microscope, an energy dispersive spectrometer, a thermal-gravimetric analyzer, and a network analyzer. The results show that the heat-resistance of silica-coated CIPs is better than that of raw CIPs. The reflection losses exceeding $-$10 dB of silica-coated CIPs are obtained in the frequency range 9.3–12.4 GHz for the absorber thickness of 2.3 mm, and the same reflection losses of uncoated CIPs reach the data in the lower frequency range for the same thickness. The enhanced microwave absorption of silica-coated CIPs can be ascribed to the combination of proper electromagnetic impedance match and the decrease of dielectric permittivity.
收稿日期: 2017-05-12
出版日期: 2017-09-27
:
52.70.Gw
(Radio-frequency and microwave measurements)
52.70.Ds
(Electric and magnetic measurements)
[1] Dong W, Qiu Y, Yang J et al 2016 J. Phys. Chem. C 120 12713 [2] Cao T, Wei C, Simpson R E et al 2014 Sci. Rep. 4 3955 [3] Cao T, Wei C, Simpson R E et al 2013 Opt. Mater. Express 3 1101 [4] Cao T, Zhang L, Simpson R E et al 2013 J. Opt. Soc. Am. B 30 1580 [5] Zhao L, Jiang W, Jin Y et al 2009 IFMBE Proc. 25 172 [6] Li D Y, Wang K, Wang X et al 2013 IFMBE Proc. 39 1624 [7] Kong L B, Li Z W, Liu L et al 2013 Int. Mater. Rev. 58 203 [8] Zhao F, Duan H, Wang W et al 2012 Physica B 407 2495 [9] Woo C H 2009 Philos. Mag. 89 2921 [10] Yin C, Fan J, Bai L et al 2013 J. Magn. Magn. Mater. 340 65 [11] Abshinova M A, Kazantseva N E, Sáha P et al 2008 Polym. Degrad. Stab. 93 1826 [12] Li J, Feng W J, Wang J S et al 2015 J. Magn. Magn. Mater. 393 82 [13] Qing Y C, Zhou W C, Shu J et al 2011 Physica B 406 777 [14] Yan L, Wang J, Han X et al 2010 Nanotechnology 21 095708 [15] Stöber W, Fink A and Bohn E 1968 J. Colloid Interface Sci. 26 62 [16] Zhu J, Wei S, Lee I et al 2012 RSC Adv. 2 1136 [17] Ebara H, Inoue T and Hashimoto O 2006 Sci. Technol. Adv. Mater. 7 77 [18] Małecki P, Królewicz M, Hiptmair F et al 2016 Smart Mater. Struct. 25 105030 [19] Ma J, Li J, Ni X et al 2009 Appl. Phys. Lett. 95 102505 [20] Wang H, Zhu D, Zhou W et al 2015 J. Magn. Magn. Mater. 375 111 [21] Liu L, Duan Y, Liu S et al 2010 J. Magn. Magn. Mater. 322 1736 [22] Chen L, Duan Y, Liu L et al 2011 Mater. Des. 32 570 [23] Zhou Y, Zhou W, Wang H et al 2015 J. Polym. Res. 22 1 [24] Gao B, Qiao L, Wang J et al 1970 J. Appl. Phys. 41 3850 [25] Jin H B, Li D, Cao M S et al 2011 Chin. Phys. Lett. 28 037701 [26] Wang T, Han R, Tan G et al 2012 J. Appl. Phys. 112 104903
[1]
. [J]. 中国物理快报, 2022, 39(4): 45201-.
[2]
. [J]. 中国物理快报, 2021, 38(1): 15201-.
[3]
. [J]. 中国物理快报, 2020, 37(4): 45201-.
[4]
. [J]. 中国物理快报, 2015, 32(08): 85201-085201.
[5]
. [J]. 中国物理快报, 2015, 32(06): 65201-065201.
[6]
. [J]. 中国物理快报, 2014, 31(06): 68401-068401.
[7]
LI Zhi-Qiang;ZHONG Hui-Huang;FAN Yu-Wei;SHU Ting;QIAN Bao-Liang;XU Liu-Rong;ZHAO Yan-Song. Investigation of an S-Band Tapered Magnetically Insulated Transmission Line Oscillator [J]. 中国物理快报, 2009, 26(5): 55201-055201.
[8]
LI Zhi-Qiang;ZHONG Hui-Huang;FAN Yu-Wei;SHU Ting;YANG Jian-Hua;YUAN Cheng-Wei;XU Liu-Rong;ZHAO Yan-Song. Simulation and Experimental Research of a Novel Vircator [J]. 中国物理快报, 2008, 25(7): 2566-2568.
[9]
FAN Yu-Wei;SHU Ting;LIU Yong-Gui;ZHONG Hui-Huang;LI Zhi-Qiang;WANG Yong;ZHAO Yan-Song;LUO Ling. A Compact Magnetically Insulated Line Oscillator with New-Type Beam Dump [J]. 中国物理快报, 2005, 22(1): 164-167.
[10]
ZHANG Shu;HU Xi-Wei. New Microwave Diagnostic Theory for Measurement of Electron Density in Atmospheric Plasmas [J]. 中国物理快报, 2005, 22(1): 168-170.
[11]
ZHANG Jun;ZHONG Hui-Huang;SHU Ting;LUO Ling;WANG Yong. Experimental Investigation on Low Magnetic Field Operation of an Overmoded Slow-Wave High-Power Microwave Generator [J]. 中国物理快报, 2004, 21(12): 2479-2481.
[12]
SHU Ting;WANG Yong;QIAN Bao-Liang;TAN Qi-Mei. A Compact Vircator with Feedback Annulus Operated in Quasi-Single TM01 Mode Within C Band [J]. 中国物理快报, 2002, 19(11): 1646-1648.
[13]
XU Hong-liang;CAO Jin-xiang;DING Wei-Xing;YU Chang-xuan. Experimental Investigation of Reflectometry as a Density Fluctuation Diagnostic [J]. 中国物理快报, 1996, 13(5): 374-377.
[14]
XI Zhonghe;ZHANG Guanghua;YANG Fan;XU Fang;ZHANG Qiang*. Probe Contamination Effect in Silane Plasma and its Improvement [J]. 中国物理快报, 1993, 10(2): 100-102.