Atomically Dispersed Ni Single-Atoms Anchored on N-Doped Graphene Aerogels for Highly Efficient Electromagnetic Wave Absorption
Bing Suo, Xiao Zhang* , Xinyu Jiang, Feng Yan* , Zhengzhi Luo, and Yujin Chen*
Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), and College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
Abstract :Uniformly dispersed nickel single atoms (SAs) are experimentally prepared on ultralight N-doped graphene aerogels (Ni-SA@NRGA). The experimental results show that Ni-SAs in graphene aerogels can improve the conduction, polarization losses, and impedance matching properties of the Ni-SA@NRGA. As a result, the minimum reflection loss ($R_{\rm L,min}$) of Ni-SA@NRGA is $-$49.46 dB with a matching thickness of 2.0 mm and the broadest efficient absorption bandwidth is 3.12 GHz at a low thickness of 1.5 mm. Meanwhile, even with a matching thickness of 1.2–2.0 mm, the $R_{\rm L,min}$ value of Ni-SA@NRGA can reach $-$20 dB. The current study demonstrates the significance of incorporating metal single atoms into graphene aerogel for electromagnetic wave absorption.
收稿日期: 2021-12-15
出版日期: 2022-03-28
:
52.70.Gw
(Radio-frequency and microwave measurements)
52.70.Ds
(Electric and magnetic measurements)
77.84.Lf
(Composite materials)
78.20.Ci
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
[1] Zhao H Q, Cheng Y, Zhang Z, Zhang B S, Pei C C, Fan F Y, and Ji G B 2021 Carbon 173 501
[2] Zhu X, Yan F, Li C Y, Qi L H, Yuan H R, Liu Y F, Zhu C L, and Chen Y J 2021 Chin. Phys. Lett. 38 015201
[3] Wang Z C, Wei R B, Gu J W, Liu H, Liu C T, Luo C J, Kong J, Shao Q, Wang N, Guo Z H, and Liu X B 2018 Carbon 139 1126
[4] Zhang X C, Xu J, Yuan H R, Zhang S, Ouyang Q Y, Zhu C L, Zhang X T, and Chen Y J 2019 ACS Appl. Mater. & Interfaces 11 39100
[5] Che R C, Peng L M, Duan X F, Chen Q, and Liang X L 2004 Adv. Mater. 16 401
[6] Sun H, Che R C, You X, Jiang Y S, Yang Z B, Deng J, Qiu L B, and Peng H S 2014 Adv. Mater. 26 8120
[7] Liu Q H, Cao Q, Bi H, Liang C Y, Yuan K P, She W, Yang Y J, and Che R C 2016 Adv. Mater. 28 486
[8] Zhang X, Yan F, Zhang S, Yuan H R, Zhu C L, Zhang X T, and Chen Y J 2018 ACS Appl. Mater. & Interfaces 10 24920
[9] Sultanov F, Daulbayev C, Bakbolat B, and Daulbayev O 2020 Adv. Colloid Interface Sci. 285 102281
[10] Zhi D D, Li T, Li J Z, Ren H S, and Meng F B 2021 Compos. Part B 211 108642
[11] Hu C G, Mou Z Y, Lu G W, Chen N, Dong Z L, Hu M J, and Qu L T 2013 Phys. Chem. Chem. Phys. 15 13038
[12] Ren S, Yu Q, Yu X H, Rong P, Jiang L Y, and Jiang J C 2020 Sci. Chin. Mater. 63 903
[13] Zhang L L, Liu D B, Muhammad Z, Wan F, Xie W, Wang Y J, Song L, Niu Z Q, and Chen J 2019 Adv. Mater. 31 1903955
[14] Zhang X C, Shi Y N, Xu J, Ouyang Q Y, Zhang X, Zhu C L, Zhang X L, and Chen Y J 2022 Nano-Micro Lett. 14 27
[15] Wu L Z, Shu R W, Zhang J B, and Chen X T 2022 J. Colloid Interface Sci. 608 1212
[16] Cheng Y, Zhao S Y, Li H B, He S, Veder J P, Johannessen B, Xiao J P, Lu S F, Pan J, Chisholm M F, Yang S Z, Liu C, Chen J G, and Jiang S P 2019 Appl. Catal. B: Environ. 243 294
[17] Zhao H B, Cheng J B, Zhu J Y, and Wang Y Z 2019 J. Mater. Chem. C 7 441
[18] Cao F H, Yan F, Xu J, Zhu C L, Qi L H, Li C Y, and Chen Y J 2021 Carbon 174 79
[19] Huang X G, Yu G Y, Zhang Y K, Zhang M J, and Shao G F 2021 Chem. Eng. J. 426 131894
[20] Zhang K C, Gao X B, Zhang Q, Li T P, Chen H, and Chen X F 2017 J. Alloys Compd. 721 268
[21] Xu J, Zhang X, Zhao Z B, Yuan H R, Zhang S, Zhu C L, Zhang X T, and Chen Y J 2020 Carbon 159 357
[22] Yuan C Z, Zhan L Y, Liu S J, Chen F, Lin H J, Wu X L, and Chen J R 2020 Inorg. Chem. Front. 7 1719
[23] Zhang X C, Zhang X, Yuan H R, Li K Y, Ouyang Q Y, Zhu C L, Zhang S, and Chen Y J 2020 Chem. Eng. J. 383 123208
[24] Pandey R, Tekumalla S, and Gupta M 2019 J. Alloys Compd. 770 473
[25] Xu D W, Yang S, Chen P, Yu Q, Xiong X H, and Wang J 2019 Carbon 146 301
[26] Liu J W, Che R C, Chen H J, Zhang F, Xia F, Wu Q S, and Wang M 2012 Small 8 1214
[27] Che R C, Zhi C Y, Liang C Y, and Zhou X G 2006 Appl. Phys. Lett. 88 033105
[28] Wu Z C, Pei K, Xing L S, Yu X F, You W B, and Che R C 2019 Adv. Funct. Mater. 29 1901448
[29] Huang Y W, Wang Y J, Wei S C, Liang Y, Huang W, Wang B, and Xu B S 2019 Int. J. Mod. Phys. B 33 1940055
[30] Chen T T, Deng F, Zhu J, Chen C F, Sun G B, Ma S L, and Yang X J 2012 J. Mater. Chem. 22 15190
[31] Ma T, Yuan M W, Islam S M, Li H F, Ma S L, Sun G B, and Yang X J 2016 J. Alloys Compd. 678 468
[32] Yin P F, Deng Y, Zhang L M, Wu W J, Wang J, Feng X, Sun X Y, Li H Y, and Tao Y 2018 Ceram. Int. 44 20896
[33] Wang D T, Wang X C, Zhang X, Yuan H R, and Chen Y J 2020 Chin. Phys. Lett. 37 045201
[34] Tang J M, Liang N, Wang L, Li J, Tian G, Zhang D, Feng S H, and Yue H J 2019 Carbon 152 575
[35] Xu J, Liu M J, Zhang X C, Li B, Zhang X, Zhang X L, Zhu C L, and Chen Y J 2022 Appl. Phys. Rev. 9 011402
[36] Chen J P, Jia H, Liu Z, Kong Q Q, Hou Z H, Xie L J, Sun G H, Zhang S C, and Chen C M 2020 Carbon 164 59
[37] Liu B, Li J H, Wang L F, Ren J H, and Xu Y F 2017 Compos. Part A 97 141
[38] Cai Z X, Su L, Wang H J, Niu M, Gao H F, Lu D, and Li M Z 2020 ACS Appl. Mater. & Interfaces 12 8555
[39] Cai Z X, Su L, Wang H J, Niu M, Tao L T, Lu D, Xu L, Li M Z, and Gao H F 2021 ACS Appl. Mater. & Interfaces 13 16704
[1]
. [J]. 中国物理快报, 2021, 38(1): 15201-.
[2]
. [J]. 中国物理快报, 2020, 37(4): 45201-.
[3]
. [J]. 中国物理快报, 2017, 34(10): 105201-.
[4]
. [J]. 中国物理快报, 2015, 32(08): 85201-085201.
[5]
. [J]. 中国物理快报, 2015, 32(06): 65201-065201.
[6]
. [J]. 中国物理快报, 2014, 31(06): 68401-068401.
[7]
LI Zhi-Qiang;ZHONG Hui-Huang;FAN Yu-Wei;SHU Ting;QIAN Bao-Liang;XU Liu-Rong;ZHAO Yan-Song. Investigation of an S-Band Tapered Magnetically Insulated Transmission Line Oscillator [J]. 中国物理快报, 2009, 26(5): 55201-055201.
[8]
LI Zhi-Qiang;ZHONG Hui-Huang;FAN Yu-Wei;SHU Ting;YANG Jian-Hua;YUAN Cheng-Wei;XU Liu-Rong;ZHAO Yan-Song. Simulation and Experimental Research of a Novel Vircator [J]. 中国物理快报, 2008, 25(7): 2566-2568.
[9]
ZHANG Shu;HU Xi-Wei. New Microwave Diagnostic Theory for Measurement of Electron Density in Atmospheric Plasmas [J]. 中国物理快报, 2005, 22(1): 168-170.
[10]
FAN Yu-Wei;SHU Ting;LIU Yong-Gui;ZHONG Hui-Huang;LI Zhi-Qiang;WANG Yong;ZHAO Yan-Song;LUO Ling. A Compact Magnetically Insulated Line Oscillator with New-Type Beam Dump [J]. 中国物理快报, 2005, 22(1): 164-167.
[11]
ZHANG Jun;ZHONG Hui-Huang;SHU Ting;LUO Ling;WANG Yong. Experimental Investigation on Low Magnetic Field Operation of an Overmoded Slow-Wave High-Power Microwave Generator [J]. 中国物理快报, 2004, 21(12): 2479-2481.
[12]
SHU Ting;WANG Yong;QIAN Bao-Liang;TAN Qi-Mei. A Compact Vircator with Feedback Annulus Operated in Quasi-Single TM01 Mode Within C Band [J]. 中国物理快报, 2002, 19(11): 1646-1648.
[13]
XU Hong-liang;CAO Jin-xiang;DING Wei-Xing;YU Chang-xuan. Experimental Investigation of Reflectometry as a Density Fluctuation Diagnostic [J]. 中国物理快报, 1996, 13(5): 374-377.
[14]
XI Zhonghe;ZHANG Guanghua;YANG Fan;XU Fang;ZHANG Qiang*. Probe Contamination Effect in Silane Plasma and its Improvement [J]. 中国物理快报, 1993, 10(2): 100-102.