Tunable Dielectric Properties of Carbon Nanotube@Polypyrrole Core-Shell Hybrids by the Shell Thickness for Electromagnetic Wave Absorption
De-Ting Wang, Xian-Chao Wang, Xiao Zhang, Hao-Ran Yuan, Yu-Jin Chen**
Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), and College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001
Abstract :Carbon nanotube@polypyrrole (CNT@PPy) hybrids have been successfully fabricated via a simple in situ chemical oxidation polymerization. The thickness of the PPy shell can be finely controlled in the range of 3.0–6.4 nm. The dielectric loss of core-shell hybrids can be tuned by the shell thickness, resulting in a well-matched characteristic impedance that can enhance electromagnetic wave (EMW) absorption performance. Minimum reflection loss of the hybrid with moderate PPy shell thickness can reach $-51.4$ dB at 11.8 GHz with a matching thickness of merely 2 mm. Furthermore, the minimum reflection loss values of the hybrid are below $-30$ dB even at thickness in the range of 1.4–1.9 mm, endowing the possibility of practical application of the hybrids in electromagnetic wave absorption field.
收稿日期: 2020-01-02
出版日期: 2020-03-24
:
52.70.Gw
(Radio-frequency and microwave measurements)
52.70.Ds
(Electric and magnetic measurements)
77.84.Lf
(Composite materials)
78.20.Ci
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
[1] Liu H T, Liu Y, Wang B S and Li C S 2015 Chin. Phys. Lett. 32 044102 [2] Mo Z, Yang R, Lu D, Yang L, Hu Q, Li H, Zhu H, Tang Z and Gui X 2019 Carbon 144 433 [3] Zheng J, Lv H, Lin X, Ji G, Li X and Du Y 2014 J. Alloys Compd. 589 174 [4] Che R C, Peng L M, Duan X F, Chen Q and Liang X L 2004 Adv. Mater. 16 401 [5] Ren Z W, Xie H and Zhou Y Y 2017 Chin. Phys. Lett. 34 105201 [6] Verma P, Saini P and Choudhary V 2015 Mater. & Des. 88 269 [7] Sun X, He J, Li G, Tang J, Wang T, Guo Y and Xue H 2013 J. Mater. Chem. C 1 765 [8] Saini P, Choudhary V, Singh B P, Mathur R B and Dhawan S K 2011 Synth. Met. 161 1522 [9] Zhang X J, Wang G S, Cao W Q, Wei Y Z, Liang J F, Guo L and Cao M S 2014 ACS Appl. Mater. & Interfaces 6 7471 [10] Lu S, Shao J, Ma K, Chen D, Wang X, Zhang L, Meng Q and Ma J 2018 Carbon 136 387 [11] Liu X G, Geng D Y and Zhang Z D 2008 Appl. Phys. Lett. 92 243110 [12] Liu J, Che R, Chen H, Zhang F, Xia F, Wu Q and Wang M 2012 Small 8 1214 [13] Wang G, Gao Z, Tang S, Chen C, Duan F, Zhao S, Lin S, Feng Y, Zhou L and Qin Y 2012 ACS Nano 6 11009 [14] Wang Y, Du Y, Xu P, Qiang R and Han X J 2017 Polymers 9 29 [15] Wu F, Xie A, Sun M, Wang Y and Wang M 2015 J. Mater. Chem. A 3 14358 [16] Liu X, Hao C, He L, Yang C, Chen Y, Jiang C and Yu R 2018 Nano Res. 11 4169 [17] Liu Y, Liu X X, Wang X J and Wen W 2014 Chin. Phys. Lett. 31 047702 [18] Che R C 2006 Appl. Phys. Lett. 88 033105 [19] Wen F, Zhang F and Liu Z 2011 J. Phys. Chem. C 115 14025 [20] Zhao C, Zhang A, Zheng Y and Luan J 2012 Mater. Res. Bull. 47 217 [21] Wang H, Ma N, Yan Z, Deng L, He J, Hou Y, Jiang Y and Yu G 2015 Nanoscale 7 7189 [22] Yu L, Yang Q, Liao J, Zhu Y, Li X, Yang W and Fu Y 2018 Chem. Eng. J. 352 490 [23] Kim Y Y, Yun J, Kim H I and Lee Y S 2012 J. Ind. Eng. Chem. 18 392 [24] Ji T, Tu R, Mu L, Lu X and Zhu J 2018 Appl. Catal. B-Eeviron. 220 581 [25] Ting T H, Jau Y N and Yu R P 2012 Appl. Surf. Sci. 258 3184 [26] Li Z F, Zhang H, Liu Q, Sun L, Stanciu L and Xie J 2013 ACS Appl. Mater. & Interfaces 5 2685 [27] Yang C, Zhang L, Hu N, Yang Z, Su Y, Xu S, Li M, Yao L, Hong M and Zhang Y 2017 Chem. Eng. J. 309 89 [28] Wang L, Yao Q, Bi H, Huang F, Wang Q and Chen L 2015 J. Mater. Chem. A 3 7086 [29] Liu Q H, Cao Q, Bi H, Liang C Y, Yuan K P, She W, Yang Y J and Che R C 2016 Adv. Mater. 28 486 [30] Kim S S, Jo S B, Gueon K I, Gueon, Choi K K, Kim J M and Chum K S 1991 IEEE Trans. Magn. 27 5462 [31] Cao M S, Yang J, Song W L, Zhang D Q, Wen B, Jin H B, Hou Z L and Yuan J 2012 ACS Appl. Mater. & Interfaces 4 6949 [32] Wu Z C, Pei K, Xing L S, Yu X F, You W B and Che R C 2019 Adv. Funct. Mater. 29 1901448 [33] Lu B, Huang H, Dong X L, Zhang X F, Lei J P, Sun J P and Dong C 2008 J. Appl. Phys. 104 114313
[1]
. [J]. 中国物理快报, 2022, 39(4): 45201-.
[2]
. [J]. 中国物理快报, 2021, 38(1): 15201-.
[3]
. [J]. 中国物理快报, 2017, 34(10): 105201-.
[4]
. [J]. 中国物理快报, 2015, 32(08): 85201-085201.
[5]
. [J]. 中国物理快报, 2015, 32(06): 65201-065201.
[6]
. [J]. 中国物理快报, 2014, 31(06): 68401-068401.
[7]
LI Zhi-Qiang;ZHONG Hui-Huang;FAN Yu-Wei;SHU Ting;QIAN Bao-Liang;XU Liu-Rong;ZHAO Yan-Song. Investigation of an S-Band Tapered Magnetically Insulated Transmission Line Oscillator [J]. 中国物理快报, 2009, 26(5): 55201-055201.
[8]
LI Zhi-Qiang;ZHONG Hui-Huang;FAN Yu-Wei;SHU Ting;YANG Jian-Hua;YUAN Cheng-Wei;XU Liu-Rong;ZHAO Yan-Song. Simulation and Experimental Research of a Novel Vircator [J]. 中国物理快报, 2008, 25(7): 2566-2568.
[9]
ZHANG Shu;HU Xi-Wei. New Microwave Diagnostic Theory for Measurement of Electron Density in Atmospheric Plasmas [J]. 中国物理快报, 2005, 22(1): 168-170.
[10]
FAN Yu-Wei;SHU Ting;LIU Yong-Gui;ZHONG Hui-Huang;LI Zhi-Qiang;WANG Yong;ZHAO Yan-Song;LUO Ling. A Compact Magnetically Insulated Line Oscillator with New-Type Beam Dump [J]. 中国物理快报, 2005, 22(1): 164-167.
[11]
ZHANG Jun;ZHONG Hui-Huang;SHU Ting;LUO Ling;WANG Yong. Experimental Investigation on Low Magnetic Field Operation of an Overmoded Slow-Wave High-Power Microwave Generator [J]. 中国物理快报, 2004, 21(12): 2479-2481.
[12]
SHU Ting;WANG Yong;QIAN Bao-Liang;TAN Qi-Mei. A Compact Vircator with Feedback Annulus Operated in Quasi-Single TM01 Mode Within C Band [J]. 中国物理快报, 2002, 19(11): 1646-1648.
[13]
XU Hong-liang;CAO Jin-xiang;DING Wei-Xing;YU Chang-xuan. Experimental Investigation of Reflectometry as a Density Fluctuation Diagnostic [J]. 中国物理快报, 1996, 13(5): 374-377.
[14]
XI Zhonghe;ZHANG Guanghua;YANG Fan;XU Fang;ZHANG Qiang*. Probe Contamination Effect in Silane Plasma and its Improvement [J]. 中国物理快报, 1993, 10(2): 100-102.