Miniband Formation in GaN/AlN Constant-Total-Effective-Radius Multi-shell Quantum Dots
Solaimani M.**
Department of Physics, Qom University of technology, Qom, Iran
Abstract :We study the procedure of miniband formation in GaN/AlN constant-total-effective-radius multi-shell quantum dots (CTER-MSQDs) by calculating the subband energies. We find a different behavior of the miniband widths and miniband gaps when the number of wells changes. It is shown that with increasing the inner quantum dot radius R in , the number of minigaps decreases; with increasing the outer quantum dot radius R out , the number of minigaps increases. We show that in the CTER-MSQDs systems, two kinds of minigaps exist: in the type (i) ones, minigaps increase monotonically when the number of wells increases while in the type (ii) ones, with increasing the number of wells, some of minigaps create, increase, at a critical number of wells decrease and finally vanish. Thus tuning of the minigaps and miniband widths in the CTER-MSQDs systems by using the number of wells, inner and outer quantum dot radii R in and R out is now possible.
收稿日期: 2015-05-31
出版日期: 2015-12-01
[1] Klappenberger F, Ignatov A A, Winnerl S, Schomburg E, Wegscheider W and Renk K F 2001 Appl. Phys. Lett. 78 1674 [2] Giorgetta F R, Baumann E, Graf M, Ajili L, Hoyler N, Giovannini M, Faist J and Hofstetter D, Kr?tz P and Sonnabend G 2007 Appl. Phys. Lett. 90 231111 [3] Willenberg H, Dohler G H and Faist J 2003 Phys. Rev. B 67 085315 [4] Klos J W and Krawczyk M 2008 Materials Science-Poland 26 965 [5] Behn U, Linder N, Grahn H T and Ploog K 1995 Phys. Rev. B 51 17271 [6] Pusep Y A, Chiquito A J, Mergulhao S and Galzerani J C 1997 Phys. Rev. B 56 3892 [7] Hyldgaard P and Jauho A P 1990 J. Phys.: Condens. Matter 2 8725 [8] Holthaus M 1992 Phys. Rev. Lett. 69 351 [9] Zhao X G 1997 Phys. Lett. A 230 229 [10] Shimada Y, Hirakawa K and Lee S W 2002 Appl. Phys. Lett. 81 1642 [11] Grahn H T, Klitzing K V Ploog K and Dohler G H 1991 Phys. Rev. B 43 12094 [12] Cota E, Jose J V and Monsivais G 1987 Phys. Rev. B 35 8929 [13] Lunz U, Keim M, Reuscher G, Fischer F, Schull K, Waag A and Landwehr G 1996 J. Appl. Phys. 80 6329 [14] Carpena P, Gasparian V and Ortuno M 1997 Z. Phys. B 102 425 [15] Chen S D, Narayan C and Karakashian A S 1996 Physica B 228 239 [16] Ferreira R and Bastard G 1997 Rep. Prog. Phys. 60 345 [17] Zhu J X, Wang Z D and Gong C D 1996 J. Appl. Phys. 80 2291 [18] Carpena P 1997 Phys. Lett. A 231 439 [19] Bouchard A M and Luban M 1995 Phys. Rev. B 52 5105 [20] Zekri N, Schreiber M, Ouasti R, Bouamrane R and Brezini A 1995 Z. Phys. B 99 381 [21] Cai X B and Xuan X F 2004 Opt. Commun. 240 227 [22] Saldana X I, Contreras-Solorio D A and Lopez-Cruz E 2007 Revista Mex. Física 53 310 [23] Ferry D K, Goodnick S M and Bird J 2009 Transport in Nanostructures (Cambridge: Cambridge University Press) 2nd edn chap 2 p 40 [24] Harrison P 2005 Quantum Wells, Wires and Dots, Theoretical and Computational Physics of Semiconductor Nanostructures 2nd edn (New York: John Wiley & Sons) chap 2 p 55 [25] Chang K 2000 Phys. Rev. B 61 4743 [26] Chang K and Xia J B 1998 Phys. Rev. B 57 9780 [27] Solaimani M, Izadifard M, Arabshahi H and Sarkardei M R 2013 J. Lumin. 134 699 [28] Solaimani M, Izadifard M, Arabshahi H and Sarkardei M R 2013 J. Lumin. 134 88 [29] Solaimani M 2014 Solid State Commun. 200 66 [30] Solaimani M, Lavaei L and Ghalandari M 2015 Superlattices Microstruct. 82 1 [31] Widmann F, Daudin B, Feuillet G, Samson Y, Rouviere J L and Pelekanos N 1998 J. Appl. Phys. 83 7618 [32] Moumanis K, Helman A, Fossard F, Tchernycheva M, Lusson A and Julien F H, Damilano B, Grandjean N and Massies J 2003 Appl. Phys. Lett. 82 869 [33] Songmuang R, Kalita D, Sinha P, Hertog M, André R, Ben T, González D, Mariette H and Monroy E 2011 Appl. Phys. Lett. 99 141914 [34] Lv W, Wang L, Wang J, Hao Z and Luo Y 2012 Nanoscale Res. Lett. 7 617 [35] Lv W, Wang, Wang J, Xing Y, Zheng J, Yang D, Hao Z and Luo Y 2013 Jpn. J. Appl. Phys. 52 08JG13 [36] Chari M V K and Salon S J 2000 Numerical Methods in Electromagnetism (New York: Academic Press) chap 2 p 80 [37] Vurgaftman I Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[1]
. [J]. 中国物理快报, 2022, 39(7): 77301-.
[2]
. [J]. 中国物理快报, 2022, 39(3): 37301-.
[3]
. [J]. 中国物理快报, 2021, 38(7): 77305-077305.
[4]
. [J]. 中国物理快报, 2021, 38(5): 57307-057307.
[5]
. [J]. 中国物理快报, 2021, 38(3): 37501-037501.
[6]
. [J]. 中国物理快报, 2020, 37(3): 37301-.
[7]
. [J]. 中国物理快报, 2018, 35(7): 77301-.
[8]
. [J]. 中国物理快报, 2018, 35(5): 57303-.
[9]
. [J]. 中国物理快报, 2017, 34(7): 77301-.
[10]
. [J]. 中国物理快报, 2015, 32(10): 107302-107302.
[11]
. [J]. 中国物理快报, 2015, 32(5): 57301-057301.
[12]
. [J]. Chin. Phys. Lett., 2012, 29(12): 128401-128401.
[13]
WANG Guo-Wei;XU Ying-Qiang;GUO Jie;TANG Bao;REN Zheng-Wei;HE Zhen-Hong;NIU Zhi-Chuan. Growth and Characterization of GaSb-Based Type-II InAs/GaSb Superlattice Photodiodes for Mid-Infrared Detection [J]. 中国物理快报, 2010, 27(7): 77305-077305.
[14]
HUO Qiu-Hong;WANG Ru-Zhi;CHEN Si-Ying;XUE Kun;YAN Hui. Spin Transport in a Magnetic Superlattice with Broken Two-Fold Symmetry [J]. 中国物理快报, 2010, 27(6): 67202-067202.
[15]
LU Shuo;SHANG Jia-Xiang;ZHANG Yue. Influence of Interface Structure of Co/Cu (100) Superlattices on Electronic Structure and Giant Magnetoresistance [J]. 中国物理快报, 2007, 24(11): 3229-3232.