Growth and Characterization of GaSb-Based Type-II InAs/GaSb Superlattice Photodiodes for Mid-Infrared Detection
WANG Guo-Wei1, XU Ying-Qiang1, GUO Jie2, TANG Bao1, REN Zheng-Wei1, HE Zhen-Hong1, NIU Zhi-Chuan1
1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2Luoyang Opti-electronics Development Center, Luoyang 471009
Growth and Characterization of GaSb-Based Type-II InAs/GaSb Superlattice Photodiodes for Mid-Infrared Detection
WANG Guo-Wei1, XU Ying-Qiang1, GUO Jie2, TANG Bao1, REN Zheng-Wei1, HE Zhen-Hong1, NIU Zhi-Chuan1
1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2Luoyang Opti-electronics Development Center, Luoyang 471009
InAs/GaSb superlattice (SL) midwave infrared photovoltaic detectors are grown by molecular beam epitaxy on GaSb(001) residual p-type substrates. A thick GaSb layer is grown under the optimized growth condition as a buffer layer. The detectors containing a 320-period 8ML/8ML InAs/GaSb SL active layer are fabricated with a series pixel area using anode sulfide passivation. Corresponding to 50% cutoff wavelengths of 5.0μm at 77 K, the peak directivity of the detectors is 1.6× 1010 cm·Hz1/2W-1 at 77 K.
InAs/GaSb superlattice (SL) midwave infrared photovoltaic detectors are grown by molecular beam epitaxy on GaSb(001) residual p-type substrates. A thick GaSb layer is grown under the optimized growth condition as a buffer layer. The detectors containing a 320-period 8ML/8ML InAs/GaSb SL active layer are fabricated with a series pixel area using anode sulfide passivation. Corresponding to 50% cutoff wavelengths of 5.0μm at 77 K, the peak directivity of the detectors is 1.6× 1010 cm·Hz1/2W-1 at 77 K.
[1] Smith D L and Mailhiot C 1990 Rev. Mod. Phys. 62 173 [2] Delaunay P Y, Nguyen B M, Hoffman D, Huang E K W and Razeghi M 2009 IEEE J. Quantum Electron. 45 157 [3] Huang E K, Hoffman D, Nguyen B M, Delaunay P Y and Razeghi M 2009 Appl. Phys. Lett. 94 053506 [4] Nathan V and Razeghi M 2007 Proc. SPIE 6542 654209 [5] Nguyen B M, Hoffman D, Huang E K, Delaunay P Y and Razeghi M 2008 Appl. Phys. Lett. 93 123502 [6] Cabanski W, Eberhardt K, Rode W, Wendler J, Ziegler J, Fleissner J, Fuchs F, Rehm R, Schmitz J, Schneider H and Walther M 2004 Proc. SPIE 5406 184 [7] Cabanski W, Munzberg M, Rode W, Wendler J, Ziegler J, Fleissner J, Fuchs F, Rehm R, Schmitz J, Schneider H and Walther B 2005 Proc. SPIE 5783 340 [8] Rehm R, Schmitz J, Fleissner J, Walther M, Ziegler J, Cabanski W and Breiter R 2005 Phys. Status Solidi C 3 435 [9] Lew A Y, Zuo S L, Yu E T and Miles R H 1997 Appl. Phys. Lett. 70 75 [10] Rodriguez J B, Christol P, Cerutti L, Chevrier F and Joullie A 2005 J. Cryst. Growth 274 6 [11] Aifer E H, Jackson E M, Bennett B R, Vurgaftman I, Meyer J R and Jernigan G G 2002 Mater. Devices Optoelectron. Microphoton. 722 275 [12] Szmulowicz F, Haugan H J, Brown G J, Mahalingam K, Ullrich B, Munshi S R and Grazulis L 2006 Opto-Electronics Review 14 71-77 [13] Yajun W and Razeghi M 2004 Phys. Rev. B 69 085316 [14] Feenstra R M, Collins D A, Ting D Z Y, Wang M W and McGill T C 1994 Phys. Rev. Lett. 72 2749 [15] Bracker A S, Yang M J, Bennett B R, Culbertson J C and Moore W J 2000 J. Cryst. Growth 220 384 [16] Nguyen B M, Hoffman D, Huang E K, Bogdanov S, Delaunay P Y, Razeghi M and Tidrow M Z 2009 Appl. Phys. Lett. 94 223506