Research of Infrared Imaging at Atmospheric Pressure Using a Substrate-Free Focal Plane Array
WU Jian-Xiong1 , CHENG Teng1** , ZHANG Qing-Chuan1 , ZHANG Yong1 , MAO Liang1 , GAO Jie1 , CHEN Da-Peng2 , WU Xiao-Ping1
1 CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 2300272 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
Abstract :An equivalent circuit model to the substrate-free focal plane array (FPA) is established. Using this fast and effective model, the performance of infrared (IR) imaging at atmospheric pressure is investigated and it is found that the substrate-free FPA has the ability of IR imaging at atmospheric pressure, whereas it has a slightly degraded noise equivalent temperature difference (NETD) as compared with IR imaging under a high vacuum. This feature is also identified experimentally by a substrate-free FPA with pixel size of 50×50 μm 2 . The NETDs are measured to be 160 mK at 10?2 Pa pressure and 1.08 K at atmospheric pressure.
收稿日期: 2012-08-08
出版日期: 2013-03-04
:
07.57.Kp
(Bolometers; infrared, submillimeter wave, microwave, and radiowave receivers and detectors)
07.10.Cm
(Micromechanical devices and systems)
42.30.Va
(Image forming and processing)
引用本文:
. [J]. 中国物理快报, 2013, 30(1): 10701-010701.
WU Jian-Xiong, CHENG Teng, ZHANG Qing-Chuan, ZHANG Yong, MAO Liang, GAO Jie, CHEN Da-Peng, WU Xiao-Ping. Research of Infrared Imaging at Atmospheric Pressure Using a Substrate-Free Focal Plane Array. Chin. Phys. Lett., 2013, 30(1): 10701-010701.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/30/1/010701
或
https://cpl.iphy.ac.cn/CN/Y2013/V30/I1/10701
[1] Lloyd J M 1975 Thermal Imaging Systems (New York: Plenum Press) [2] Rogalski A 2003 Infrared Detectors: Status Trends in Prog. Quant. Electron. 27 59 [3] Pan L, Zhang Q C, Wu X P Duan Z H, Chen D P Wang W B and Guo Z Y 2004 J. Exp. Mech. 19 403 (in Chinese) [4] Duan Z H, Zhang Q C, Wu X P Pan L, Chen D P Wu X P and Guo Z Y 2003 Chin. Phys. Lett. 20 2130 [5] Li C B, Jiao B B, Shi S L, Chen D P Ye T C, Zhang Q C, Guo Z Y, Dong F L and Miao Z Y 2006 Meas. Sci. Technol. 17 1981 [6] Xiong Z M, Zhang Q C, Gao J, Wu X P Chen D P and Jiao B B 2007 J. Appl. Phys. 102 113524 [7] Shi H T, Zhang Q C, Qian J, Mao L, Cheng T, Gao J, Wu X P, Chen D P and Jiao B B 2009 Opt. Express 17 4367 [8] Cheng T, Zhang Q C, Wu X P, Chen D P and Jiao B B 2008 IEEE Electron Device Lett. 29 1218 [9] Cheng T, Zhang Q C, Chen D P, Shi H T, Gao J and Wu X P 2009 J. Appl. Phys. 105 034505 [10] Jiang X K, Zhang Q C, Shi H T, Mao L, Cheng T and Wu X P 2011 Acta Phys. Sin. 5 054401 (in Chinese)
[1]
. [J]. 中国物理快报, 2017, 34(9): 90701-.
[2]
. [J]. 中国物理快报, 2015, 32(03): 38501-038501.
[3]
. [J]. 中国物理快报, 2013, 30(12): 128501-128501.
[4]
REN Yuan;MIAO Wei;YAO Qi-Jun;ZHANG Wen;SHI Sheng-Cai**
. Terahertz Direct Detection Characteristics of a Superconducting NbN Bolometer [J]. 中国物理快报, 2011, 28(1): 10702-010702.
[5]
DONG Feng-Liang;ZHANG Qing-Chuan;CHEN Da-Peng;MIAO Zheng-Yu;XIONG Zhi-Ming;GUO Zhe-Ying;LI Chao-Bo;JIAO Bin-Bin;WU Xiao-Ping. Optimized Optomechanical Micro-Cantilever Array for Uncooled Infrared Imaging [J]. 中国物理快报, 2007, 24(12): 3362-3364.
[6]
DUAN Zhi-Hui;ZHANG Qing-Chuan;WU Xiao-Ping;PAN Liang;CHEN Da-Peng;WANG Wei-Bing;GUO Zhe-Ying. Uncooled Optically Readable Bimaterial Micro-Cantilever Infrared Imaging Device [J]. 中国物理快报, 2003, 20(12): 2130-2132.