Pseudo-Harmonic Oscillatory Ring-Shaped Potential in a Relativistic Equation
M. Eshghi**
1 Department of Physics, Faculty of Sciences, Imam Hossein Comprehensive University, Tehran, Iran
Abstract :Exact solutions of the Dirac equation are studied for the pseudo-harmonic oscillatory ring-shaped potential by using the Laplace transform approach and the Nikiforov–Uvarov (NU) method. The normalized eigenfunctions are expressed in terms of hyper-geometric series and use the NU and Laplace methods to obtain the eigenvalues equations. The obtained result of the eigenvalue equation is compared. At the end, one can find with a simple transformation the lower spinor component of the Dirac equation.
收稿日期: 2012-06-29
出版日期: 2012-11-28
:
03.65.Pm
(Relativistic wave equations)
03.65.Ge
(Solutions of wave equations: bound states)
02.30.Gp
(Special functions)
[1] Salamin, Y I, Hu S, Hatsagortsyan K Z and Keitel C H 2006 Phys. Rep. 427 41 [2] Kim S H 2009 Chin. Phys. Lett. 26 011201 [3] Kim S H 2009 Chin. Phys. Lett. 26 054101 [4] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620 [5] Wang I C and Wong C Y 1988 Phys. Rev. D 38 348 [6] Zarrinkamar S, Rajabi A A and Hassanabadi H 2010 Ann. Phys. 325 2522 [7] Eshghi M and Hamzavi M 2012 Commun. Theor. Phys. 57 355 [8] Eshghi M and Mehraban H 2012 Few-Body Syst. 52 41 [9] Eshghi M 2011 Int. J. Sci. Adv. Tech. 1(10) 11 [10] Hamzavi M, Eshghi M and Ikhdair S M 2012 J. Math. Phys. 53 082101 [11] Eshghi M and Mehraban H 2012 Chin. J. Phys. 50 533 [12] Zhang X A, Chen K and Duan Z L 2005 Chin. Phys. 14 42 [13] Zhang M C and Huang-Fu G Q 2012 Ann. Phys. 327 841 [14] Cheng Y F and Dai T Q 2007 Chin. J. Phys. 45 480 [15] Hu X Q, Luo G, Wu Z M and Niu L B 2010 Commun. Theor. Phys. 53 242 [16] Akcay H 2009 Phys. Lett. A 373 616 [17] Aydo?du O and Sever R 2010 Ann. Phys. 325 373 [18] Hamzavi M and Amirfakhrian M 2011 Int. J. Phys. Sci. 6 3807 [19] Zhang M C, Sun G H and Dong S H 2010 Phys. Lett. A 374 704 [20] Chen G 2005 Chin. Phys. 14 1075 [21] Doetsch G 1961 Guide to the Applications of Laplace Transforms (Princeton: Princeton University Press) [22] Chen G 2004 Phys. Lett. A 326 55 [23] Arda A and Sever R 2012 J. Math. Chem. 50 971 [24] Schr?dinger E 1926 Ann. Phys. 79 361 [25] Swainson R A and Drake G W F 1991 J. Phys. A: Math. Gen. 24 79 [26] Chen G 2005 Chin. Phys. 14 1075 [27] Lisboa R, Malheiro M, De Castro A S, Alberto P and Fiolhais M 2004 Phys. Rev. C 69 024319 [28] Akcay H 2009 Phys. Lett. A 373 616 [29] Spiegel M R 1965 Schaum's Outline of Theory and Problems of Laplace Transforms (New York: Schaum Publishing) [30] Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (New York: Dover) [31] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Verlag Basel: Birkhauser) [32] Aydougdu O and Sever R 2009 Phys. Scr. 80 015001
[1]
. [J]. 中国物理快报, 2020, 37(9): 90303-.
[2]
. [J]. 中国物理快报, 2020, 37(5): 50301-.
[3]
. [J]. 中国物理快报, 2016, 33(03): 37302-037302.
[4]
. [J]. 中国物理快报, 2016, 33(02): 20201-020201.
[5]
. [J]. 中国物理快报, 2015, 32(03): 30201-030201.
[6]
. [J]. Chin. Phys. Lett., 2013, 30(2): 20305-020305.
[7]
REN Na, WANG Jia-Xiang, LI An-Kang, WANG Ping-Xiao. Pair Production in an Intense Laser Pulse: The Effect of Pulse Length [J]. 中国物理快报, 2012, 29(7): 71201-071201.
[8]
HUANG Zeng-Guang**;FANG Wei;;LU Hui-Qing;
. Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory [J]. 中国物理快报, 2011, 28(8): 89801-089801.
[9]
HUANG Zeng-Guang**;FANG Wei;LU Hui-Qing;**
. Inflation and Singularity in Einstein–Cartan Theory [J]. 中国物理快报, 2011, 28(2): 29802-029802.
[10]
Marina-Aura Dariescu**;Ciprian Dariescu;Ovidiu Buhucianu
. Charged Scalars in Transient Stellar Electromagnetic Fields [J]. 中国物理快报, 2011, 28(1): 10303-010303.
[11]
FENG Jun-Sheng**;LIU Zheng;GUO Jian-You
. Bound and Resonant States of the Hulthén Potential Investigated by Using the Complex Scaling Method with the Oscillator Basis [J]. 中国物理快报, 2010, 27(11): 110304-110304.
[12]
PAN Qi-Yuan;JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole [J]. 中国物理快报, 2010, 27(6): 60302-060302.
[13]
S. H. Kim. Identification of the Amplification Mechanism in the First Free-Electron Laser as Net Stimulated Free-Electron Two-Quantum Stark Emission [J]. 中国物理快报, 2009, 26(5): 54101-054101.
[14]
S. H. Kim. Electric-Wiggler-Enhanced Three-Quantum Scattering and the Output Power Affected by this Scattering in a Free-Electron Laser [J]. 中国物理快报, 2009, 26(1): 11201-011201.
[15]
M. R. Setare;O. Hatami. Exact Solutions of the Dirac Equation for an Electron in a Magnetic Field with Shape Invariant Method [J]. 中国物理快报, 2008, 25(11): 3848-3851.