The late-time evolution of the phantom scalar perturbation is investigated in the spacetime of a four-dimensional spherically symmetric static black hole. It is revealed that the asymptotic tail of the phantom scalar field is dominated by the growth behavior t-(l+3/2)eμt, which depends on the multipole moment l and the field massμ but is independent of the mass M and charge Q of the black hole. This growth behavior is in strong contrast to the decaying tail of the usual massive scalar perturbation and shows that the external phantom scalar perturbation is unstable in the spherically symmetric static black hole spacetime.
The late-time evolution of the phantom scalar perturbation is investigated in the spacetime of a four-dimensional spherically symmetric static black hole. It is revealed that the asymptotic tail of the phantom scalar field is dominated by the growth behavior t-(l+3/2)eμt, which depends on the multipole moment l and the field massμ but is independent of the mass M and charge Q of the black hole. This growth behavior is in strong contrast to the decaying tail of the usual massive scalar perturbation and shows that the external phantom scalar perturbation is unstable in the spherically symmetric static black hole spacetime.
PAN Qi-Yuan;JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. 中国物理快报, 2010, 27(6): 60302-060302.
PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole. Chin. Phys. Lett., 2010, 27(6): 60302-060302.
[1] Ruffini R and Wheeler J A 1971 Phys. Today 24 30 [2] Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (San Francisco: Freeman) [3] Price R H 1972 Phys. Rev. D 5 2419 [4] Hod S and Piran T 1998 Phys. Rev. D 58 024017 Hod S and Piran T 1998 Phys. Rev. D 58 024018 Hod S and Piran T 1998 Phys. Rev. D 58 024019 [5] Barack L and Ori A 1999 Phys. Rev. Lett. 82 4388 [6] Jing J L and Ding C K 2008 Chin. Phys. Lett. 25 858 [7] Pan Q Y and Jing J L 2008 Class. Quantum Grav. 25 038002 [8] Hod S 2009 Class. Quantum Grav. 26 028001 [9] Burko L M and Khanna G 2009 Class. Quantum Grav. 26 015014 [10] Zhang Y, Wang C Y, Gui Y X, Wang F J and Yu F 2009 Chin. Phys. Lett. 26 030401 [11] Hod S and Piran T 1998 Phys. Rev. D 58 044018 [12] Koyama H and Tomimatsu A 2001 Phys. Rev. D 63 064032 Koyama H and Tomimatsu A 2001 Phys. Rev. D 64 044014 [13] Yu H W 2002 Phys. Rev. D 65 087502 [14] Jing J L 2004 Phys. Rev. D 70 065004 Jing J L 2005 Phys. Rev. D 72 027501 [15] He X and Jing J L 2006 Nucl. Phys. B 755 313 [16] Konoplya R A, Zhidenko A and Molina C 2007 Phys. Rev. D 75 084004 [17] Moderski R and Rogatko M 2008 Phys. Rev. D 77 124007 [18] Gibbons G W and Rogatko M 2008 Phys. Rev. D 77 044034 [19] Chen S B, Jing J L and Pan Q Y 2009 Phys. Lett. B 670 276 [20] Chen S B and Jing J L 2009 J. High Energy Phys. 03 081 [21] He X, Wang B, Wu S F and Lin C Y 2009 Phys. Lett. B 673 156 [22] Rogatko M and Szyplowska A 2009 arXiv:0905.4342 [hep-th] [23] Berti E, Cardoso V and Starinets A O 2009 arXiv:0905.2975 [gr-qc] [24] Candelas P 1980 Phys. Rev. D 21 2185 [25] Weinberg S 1989 Rev. Mod. Phys. 61 1 [26] Ohta N 2003 Phys. Rev. Lett. 91 061303 Ohta N 2003 Prog. Theor. Phys. 110 269 [27] Gutperle M, Kallosh R and Linde A 2003 J. Cosmol. Astropart. Phys. 07 001 [28] Gundlach C, Price R H and Pullin J 1994 Phys. Rev. D 49 883 [29] Leaver E W 1986 Phys. Rev. D 34 384 [30] Chandrasekhar S 1983 The Mathematical Theory of Black Holes (Oxford: Oxford University) [31] Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions (New York: Dover) [32] Wang B, Abdalla E and Mann R B 2002 Phys. Rev. D 65 084006